Multiple Feature Extraction Based on Ensemble Empirical Mode Decomposition for Motor Imagery EEG Recognition Tasks
-
摘要: 人的脑电信号(Electroencephalogram,EEG)复杂且具有非线性及非平稳性的特点使其不易分析处理,其识别效果也依赖于数据集的不同,而表现不稳定.本文中应用的总体经验模态分解(Ensemble empirical mode decomposition,EEMD)是一种具有强自适应性的信号处理方法,其在时频域展现的良好分辨率特别适合脑电识别任务处理.本文提出利用EEMD分解后得到的较具影响能力的固有模态函数(Intrinsic mode functions,IMFs),利用希尔伯特变换提取边际谱(Marginal spectrum,MS)及瞬时能谱(Instantaneous energy spectrum,IES)时频特征,同时通过加窗的方法提取非线性动力学特征近似熵特征,利用线性判别分类器(Linear discriminant analysis,LDA)作为分类器,实验结果得出,对于被试S2和被试S3可达到识别率分别为79.60%和87.77%,实验中9名被试的平均识别率为82.74%,得到平均识别率也高于近期使用相同数据集文献的其他方法.Abstract: EEG signals are complicated as well as nonlinear and non-stationary, which make them hard to analyze. Recognition result is dependent on the datasets selected, and is not stable. The ensemble empirical mode decomposition (EEMD) as a kind of adaptive signal processing method is used for motor imagery recognition tasks because of its good decomposition resolution. An efficient EEMD-based feature extraction scheme is presented, which combines the Hilbert marginal spectrum (MS) and instantaneous energy spectrum (IES) features with window-added EEMD-based approximate entropy (ApEn) features. The impactful factors of IMFs and frequency bands are selected for the features as well. A linear discriminant analysis (LDA) classifier is designed for classifyication. The method is tested on nine subjects. The result shows that the proposed feature combination is competitive in recognition rate with other methods on the same dataset. The maximal classification accuracy for S2 and S3 can reach 79.60% and 87.77%, respectively. The mean accuracy of nine subjects is 82.74%. The average recognition rate obtained is superior to other methods on the same datasets.
-
无线网络化多传感器融合估计以其一系列优点, 已经被广泛应用于控制、目标跟踪、生物监测、信号处理和通信等领域, [1-4].然而在实际应用系统中将不可避免地存在传感器故障、模型的不确定性、时间延迟和丢包问题, 使得系统融合估计性能受到严重损害.针对此类系统, 已有学者将随机系统理论、时滞系统理论和融合估计理论相结合, 提出了一些融合估计算法.文献[5]通过增广矩阵方法, 将同时存在不确定观测、随机测量时延和多丢包现象的系统转化为无时滞系统, 并利用射影理论导出最优融合估计器; 考虑到文献[5]中状态维数增加将导致计算负担加重, 文献[6]基于MMSE (Minimum mean square error)准则, 导出了传感器失效下, 既有观测时延又有状态时延的不确定系统的鲁棒Kalman滤波器.文献[7]在集中式融合框架下, 对存在传感器失效、模型不确定性、观测数据包延迟和丢失情况下的融合估计问题进行了讨论, 并提出两种不同的融合估计算法.文献[8]利用文献[9]的结论, 在未考虑模型不确定的前提下, 提出了具有传感器失效、局部最优估计传输时延和丢包下的分布式Kalman融合估计方法.
在恶劣复杂的使用环境中, 除传感器失效现象外, 还会出现因传感器老化、网络拥堵等原因导致的传感器增益退化, [10-12].相比于传感器失效, 传感器增益退化在无线网络化多传感器融合估计系统中并未得到广泛研究, 而且同时考虑传感器增益退化、模型不确定性、数据时延和丢包问题的文献极少.文献[13]在文献[14]的基础上, 给出了一种传感器增益退化下, 具有数据传输延迟和丢失的离散不确定系统的集中式融合估计器.集中式融合结构虽能保证融合估计性能最优, 但是其容错能力较差, 工程上难以实现.因此, 本文在分布式融合框架下, 研究了具有传感器增益退化、模型不确定性、数据传输延迟和丢包的多传感器融合估计问题.其中, 模型的不确定性描述为系统矩阵受到随机扰动, 传感器增益退化现象通过统计特性已知的随机变量来描述, 并由此得到传感器增益退化下的量测方程, 随机时延和丢包现象存在于局部最优状态估计向融合中心传输的过程中.首先, 基于状态方程和量测方程, 设计了一种局部最优无偏估计器, 使得局部估计误差均方差最小.然后, 将传输时延描述为随机过程, 并在融合中心端建立符合存储规则的时延, -, 丢包模型, 利用最优线性无偏估计方法, [15-18], 导出最小方差意义下的分布式融合估计器.最后, 通过算例仿真证明所设计融合估计器的有效性.
1. 问题描述与分析
考虑如下离散不确定线性时变随机系统:
$ {{{\textbf{x}}}_{k+1}}=({{A}_{k}}+{{g}_{k}}{{\hat{A}}_{k}}){{\textbf{{x}}}_{k}}+{{{\textbf{w}}}_{k}} $
(1) 其中, ${{\pmb{\textbf{x}}}_{k}}\in {{\bf R}^{n}}$ 是系统状态, ${{A}_{k}}$ 和 ${{\hat{A}}_{k}}$ 是已知矩阵, ${{\pmb{\textbf{w}}}_{k}}\in{{\bf R}^{n}}$ 是协方差矩阵为 ${{W}_{k}}$ 的零均值白噪声, ${{g}_{k}}$ 是乘性白噪声, 且已知 ${\rm E}\{{{g}_{k}}\}={{\bar{g}}_{k}}$ , ${\rm E}\{g_{k}^{2}\}={{\tilde{g}}_{k}}$ .
如图 1所示, 假设系统由 $N$ 个传感器进行观测, 第 $i$ 个传感器的量测方程描述为:
$ {\textbf{y}}_{k}^{i}=f_{k}^{i}C_{k}^{i}{{\pmb{\textbf{x}}}_{k}}+\pmb{\textbf{v}}_{k}^{i}, ~~i=1, 2, \cdots, N $
(2) 其中, $\pmb{\textbf{y}}_{k}^{i}\in {{\bf R}^{{{m}^{i}}}}$ 是第 $i$ 个传感器的测量输出, $C_{k}^{i}$ 是已知的量测矩阵, $\pmb{\textbf{v}}_{k}^{i}$ 是协方差矩阵为 $V_{k}^{i}$ 的零均值白噪声, 并假设 $\pmb{\textbf{v}}_{k}^{i}$ 与 ${{\pmb{\textbf{w}}}_{k}}$ 、 ${{g}_{k}}$ 均不相关. $f_{k}^{i}$ 是分布在区间 $[{{a}^{i}}, {{b}^{i}}]~(0\le{{a}^{i}}\le{{b}^{i}}\le1)$ 上的随机变量, 它用来描述传感器增益退化程度, 且已知 ${\rm E}\{f_{k}^{i}\}=\bar{f}_{k}^{i}$ , ${\rm E}\{f{{_{k}^{i}}^{2}}\}=\tilde{f}_{k}^{i}$ .
不失一般性, 对系统做如下假设:
假设1.对于任意 $i$ 和 $k$ , $f_{k}^{i}$ 、 ${{g}_{k}}$ 、 ${{\pmb{\textbf{w}}}_{k}}$ 和 $\pmb{\textbf{v}}_{k}^{i}$ 两两互不相关.
假设2.初始状态 ${{\pmb{\textbf{x}}}_{0}}$ 与 $f_{k}^{i}$ 、 ${{g}_{k}}$ 、 ${{\pmb{\textbf{w}}}_{k}}$ 和 $\pmb{\textbf{v}}_{k}^{i}$ 均不相关, 并定义 ${{X}_{0, 0}}:={\rm E}\{{{\pmb{\textbf{x}}}_{0}}\pmb{\textbf{x}}_{0}^{{\rm T}}\}$ .
假设第 $i$ 个子系统(1)和(2)的局部最优(线性最小方差意义下)状态估计记为 $\hat{\pmb{\textbf{x}}}_{k}^{i}$ .在这里, 因为标准Kalman滤波器要求系统矩阵是确定的, 且系统噪声为协方差已知的白噪声, 而本文所研究的系统方程(1)中, 系统矩阵 $({{A}_{k}}+{{g}_{k}}{{\hat{A}}_{k}})$ 中存在乘性随机噪声 ${{g}_{k}}$ , 使得每一时刻系统矩阵不再是确定的, 且并未假设 ${{g}_{k}}$ 是白噪声, 因此标准Kalman滤波器不适合解决系统模型(1)和(2)的最优估计问题.所以, 为得到具有传感器增益退化和模型不确定性子系统的局部最优状态估计, 本文采用如下滤波器的形式:
$ \hat{\pmb{\textbf{x}}}_{k+1}^{i}=L_{k}^{i}(\pmb{\textbf{y}}_{k}^{i}-\bar{f}_{k}^{i}C_{k}^{i}\hat{\pmb{\textbf{x}}}_{k}^{i})+({{A}_{k}}+{{\bar{g}}_{k}}{{\hat{A}}_{k}})\hat{\pmb{\textbf{x}}}_{k}^{i} $
(3) 其中, $L_{k}^{i}$ 表示局部滤波增益, 局部最优误差协方差矩阵为 $P_{k}^{i, i}:={\rm E}\{({{\pmb x}_{k}}-\hat{\pmb x}_{k}^{i}){{({{\pmb x}_{k}}-\hat{\pmb x}_{k}^{i})}^{\rm T}}\}$ , 局部最优误差交叉协方差矩阵为 $P_{k}^{i, j}:={\rm E}\{({{\pmb x}_{k}}-\hat{\pmb x}_{k}^{i}){{({{\pmb x}_{k}}-\hat{\pmb x}_{k}^{j})}^{\rm T}}\}$ .
下面给出定理1证明滤波器(3)是无偏的.
定理1.在满足 ${{\hat{\pmb{\textbf{x}}}}_{0}}={\rm E}\{{{\pmb{\textbf{x}}}_{0}}\}$ 的前提下, 式(3)所描述的滤波器是无偏的.
证明.利用数学归纳法, 令 $\tilde{\pmb{\textbf{x}}}_{k}^{i}={{\pmb{\textbf{x}}}_{k}}-\hat{\pmb{\textbf{x}}}_{k}^{i}$ , 当 $k=0$ 时, ${{\hat{\pmb{\textbf{x}}}}_{0}}={\rm E}\{{{\pmb{\textbf{x}}}_{0}}\}$ , 假设 $k$ 时刻 ${\rm E}\{\tilde{\pmb{\textbf{x}}}_{k}^{i}\}=0$ , 则 $k+1$ 时刻, 有
$ {\rm E}\{\tilde{\pmb{\textbf{x}}}_{k+1}^{i}\}={\rm E}\{({{A}_{k}}+{{g}_{k}}{{{\hat{A}}}_{k}}){{\pmb{\textbf{x}}}_{k}}+{{\pmb{\textbf{w}}}_{k}}\}-\nonumber\\ ({{A}_{k}}+{{{\bar{g}}}_{k}}{{{\hat{A}}}_{k}})\hat{\pmb{\textbf{x}}}_{k}^{i}-L_{k}^{i}({\rm E}\{\pmb{\textbf{y}}_{k}^{i}\}-\bar{f}_{k}^{i}C_{k}^{i}\hat{\pmb{\textbf{x}}}_{k}^{i})=\nonumber\\ [({{A}_{k}}+{{{\bar{g}}}_{k}}{{{\hat{A}}}_{k}})-L_{k}^{i}\bar{f}_{k}^{i}C_{k}^{i}]{\rm E}\{\tilde{\pmb{\textbf{x}}}_{k}^{i}\}=0 $
(4) 为方便运算, 定义运算符号 $co{{l}_{i}}({{D}_{i}}):={{[D_{1}^{\rm T}, \cdots, D_{i}^{\rm T}, \cdots, D_{N}^{{\rm T}}]}^{{\rm T}}}$ , 根据最优线性无偏估计方法, [15-18], 最优分布式融合估计器为:
$ \hat{\pmb{\textbf{x}}}_{k}^{o}={{(I_{o}^{{\rm T}}P_{k}^{-1}{{I}_{o}})}^{-1}}I_{o}^{{\rm T}}P_{k}^{-1}{{\pmb{\textbf{z}}}_{k}} $
(5) 其中, $\hat{\pmb{\textbf{x}}}_{k}^{o}$ 表示融合估计值, ${{I}_{o}}:={col}_{i}({{I}_{n}})$ , ${{I}_{n}}$ 表示 $n$ 维单位矩阵, ${{\pmb{\textbf{z}}}_{k}}:={col}_{i}(\hat{\pmb{\textbf{x}}}_{k}^{i})$ , ${{P}_{k}}=\left[{matrix} P_{k}^{1, 1} & \cdots & P_{k}^{1, N} \\ \vdots & \ddots & \vdots \\ P_{k}^{N, 1} & \cdots & P_{k}^{N, N} \\ {matrix} \right]$ .最小融合估计误差协方差矩阵 $P_{k}^{o}:={\rm E}\{({{\pmb{\textbf{x}}}_{k}}-\hat{\pmb{\textbf{x}}}_{k}^{o}){{({{\pmb{\textbf{x}}}_{k}}-\hat{\pmb{\textbf{x}}}_{k}^{o})}^{{\rm T}}}\}$ 为:
$ P_{k}^{o}={{(I_{o}^{{\rm T}}P_{k}^{-1}{{I}_{o}})}^{-1}} $
(6) 在分布式框架下, 随机时延和丢包现象存在于局部最优状态估计向融合中心传输的过程中, 本文将传输时延和丢包描述为:
$ \left\{ {\begin{array}{l} {\pmb{\textbf{z}}_{k}^{i}=\sum\limits_{m=0}^{L}{\delta (\tau _{k}^{i}, m)\hat{\pmb{\textbf{x}}}_{k-m}^{i}}, \quad 0\le m\le L} \\ \hat{\pmb{\textbf{x}}}_{d}^{i}=0, ~~~~~~~~d=-L, -L+1, \cdots, -1\\ \end{array}} \right. $
(7) 其中, $\pmb{\textbf{z}}_{k}^{i}\in {{\bf R}^{n}}$ 表示经第 $i$ 通道到达融合中心的信号, $L$ 表示最大时延, $\delta (\cdot)$ 是标准Dirca函数, 并满足 ${\rm E}\{\delta (\tau _{k}^{i}, m)\}={\rm Prob}\{\tau _{k}^{i}=m\}=p_{m, k}^{i}$ , $\sum_{m=0}^{L}{p_{m, k}^{i}}\le 1$ . $\tau_{k}^{i}=m$ 表示 $k$ 时刻第 $i$ 通道的传输时延为 $m$ .显然, 数据丢包发生的概率为 $-\sum_{m=0}^{L}{p_{m, k}^{i}}$ .
针对不同时刻数据包可能会同时到达融合中心的情况, 采用文献[19]提出的信号存储原则, 每个时刻的局部最优估计 $\hat{\pmb{\textbf{x}}}_{k}^{i}$ 在被发送前已经被标记好时间顺序, 融合中心根据所收到信号的标记, 只存储最新时刻的数据包, 丢掉其他数据包.
由于时延和丢包的存在, 在 $k$ 时刻, 经第 $i$ 通道到达融合中心的局部最优状态估计为 $\hat{\pmb{\textbf{x}}}_{k-m}^{i}~(m=0, 1, \cdots, L)$ , 或者发生数据丢包.因此, 不能将此时的信号直接用于分布式融合估计.为此, 设 $\hat{\pmb{\textbf{x}}}_{r, k}^{i}$ 为 $k$ 时刻第 $i$ 通道在融合中心端用于设计分布式融合估计器的局部重组状态估计, 下角标`` $r$ "表示重组, `` $k$ "表示 $k$ 时刻, 上角标`` $i$ "表示第 $i$ 通道. $\hat{\pmb{\textbf{x}}}_{r, k}^{i}$ 的形式可描述为:
$ \hat{\pmb{\textbf{x}}}_{r, k}^{i}=\sum\limits_{m=0}^{L}{\Bigg[\delta (\tau _{k}^{i}, m)}\prod\limits_{\tau=1}^{m}{({{A}_{k-\tau }}+{{{\bar{g}}}_{k-\tau }}{{{\hat{A}}}_{k-\tau }})\hat{\pmb{\textbf{x}}}_{k-m}^{i}}\Bigg] +\nonumber\\ \left[1-\sum\limits_{m=0}^{L}{\delta(\tau_{k}^{i}, m)}\right]({{A}_{k-1}}+{{{\bar{g}}}_{k-1}}{{{\hat{A}}}_{k-1}})\hat{\pmb{\textbf{x}}}_{r, k-1}^{i} $
(8) 式(8)的含义为:发生时延 $m$ 时, $k$ 时刻经第 $i$ 通道到达融合中心的时延信号为 $\hat{\pmb{\textbf{x}}}_{k-m}^{i}$ , 则对应的局部重组状态估计取为 $\hat{\pmb{\textbf{x}}}_{k-m}^{i}$ 的 $m$ 步预测值, 即为 $\prod_{\tau=1}^{m}{({{A}_{k-\tau }}+{{{\bar{g}}}_{k-\tau }}{{{\hat{A}}}_{k-\tau }})\hat{\pmb{\textbf{x}}}_{k-m}^{i}}$ ; 发生数据丢包时, 则取上一时刻第 $i$ 通道的局部重组状态估计的一步预测值作为本时刻的局部重组状态估计, 即为 $({{A}_{k-1}}+{{\bar{g}}_{k-1}}{{\hat{A}}_{k-1}})\hat{\pmb{\textbf{x}}}_{r, k-1}^{i}$ .
针对上述具有传感器增益退化、模型不确定性、随机时延和丢包的多传感器融合估计系统, 本文要解决的问题是:
1) 针对第 $i$ 个子系统(1)和(2), 设计局部增益 $L_{k}^{i}$ , 使得局部估计误差协方差最小.
2) 基于所设计的局部滤波增益 $L_{k}^{i}$ 及相应的 $N$ 个局部重组状态估计 $\hat{\pmb{\textbf{x}}}_{r, k}^{i}$ , 根据最优线性无偏估计方法, 得到分布式融合估计器的递推形式.
2. 局部最优滤波增益设计
在引出主要结论之前, 首先定义如下算子:
$ \left\{ {\begin{array}{l} {{X}_{k, k}}:={\rm E}\{{{\pmb{\textbf{x}}}_{k}}\pmb{\textbf{x}}_{k}^{{\rm T}}\}, Y_{k, k}^{i, j}:={\rm E}\{\pmb{\textbf{y}}_{k}^{i}\pmb{\textbf{y}}{{_{k}^{j}}^{{\rm T}}}\} \nonumber\\ H_{k, k}^{i}:={\rm E}\{{{\pmb{\textbf{x}}}_{k}}\pmb{\textbf{y}}{{_{k}^{i}}^{{\rm T}}}\}, \Lambda _{k, k}^{i}:={\rm E}\{{{\pmb{\textbf{x}}}_{k}}\hat{\pmb{\textbf{x}}}{{_{k}^{i}}^{{\rm T}}}\} \nonumber\\ M_{k, k}^{i, j}:={\rm E}\{\hat{\pmb{\textbf{x}}}_{k}^{i}\pmb{\textbf{y}}{{_{k}^{j}}^{{\rm T}}}\}, \Gamma _{k, k}^{i, j}:={\rm E}\{\hat{\pmb{\textbf{x}}}_{k}^{i}\hat{\pmb{\textbf{x}}}{{_{k}^{j}}^{{\rm T}}}\} \nonumber\\ {{A}_{\bar{g}, k}}:={{A}_{k}}+{{{\bar{g}}}_{k}}{{{\hat{A}}}_{k}}, {{A}_{g, k}}:={{A}_{k}}+{{g}_{k}}{{{\hat{A}}}_{k}}\nonumber\\ \end{array}} \right. $
(9) 定理2.对于第 $i$ 个子系统(1)和(2), 使得局部滤波器(3)误差协方差最小的局部滤波增益的递推形式为:
$ L_{k}^{i}=S{{_{k}^{i}}^{{\rm T}}}{{(T_{k}^{i})}^{-1}} $
(10) 局部最优误差协方差递推形式为:
$ P_{k+1}^{i, i}={{A}_{\bar{g}, k}}P_{k}^{i, i}{{A}_{\bar{g}, k}}^{{\rm T}}-S{{_{k}^{i}}^{{\rm T}}}{{(T_{k}^{i})}^{-1}}S_{k}^{i}+{{W}_{k}}+\nonumber\\ ({{{\tilde{g}}}_{k}}-\bar{g}_{k}^{2}){{{\hat{A}}}_{k}}{{X}_{k, k}}\hat{A}_{k}^{{\rm T}} $
(11) 局部最优误差交叉协方差递推形式为:
$ P_{k+1}^{i, j}={{A}_{\bar{g}, k}}P_{k}^{i, j}{{A}_{\bar{g}, k}}^{{\rm T}}+{{W}_{k}}-{{A}_{\bar{g}, k}}[H_{k, k}^{j}-M_{k, k}^{i, j} +\nonumber\\~~~\bar{f}_{k}^{j}C_{k}^{j{\rm T}}(\Gamma _{k, k}^{i, j}-\Lambda _{k, k}^{j})]L_{k}^{j{\rm T}}+({{{\tilde{g}}}_{k}}-\bar{g}_{k}^{2}){{{\hat{A}}}_{k}}{{X}_{k, k}}\hat{A}_{k}^{{\rm T}}-\nonumber\\~~~L_{k}^{i}[H_{k, k}^{i{\rm T}}-M_{k, k}^{j, i{\rm T}}+\bar{f}_{k}^{i}C_{k}^{i}{{(\Gamma _{k, k}^{j, i}-\Lambda _{k, k}^{i})}^{{\rm T}}}]{{A}_{\bar{g}, k}}^{{\rm T}} +\nonumber\\~~~L_{k}^{i}(\bar{f}_{k}^{i}\bar{f}_{k}^{j}C_{k}^{i}{{X}_{k, k}}C_{k}^{j{\rm T}}-\bar{f}_{k}^{j}M_{k, k}^{j, i{\rm T}}C_{k}^{j{\rm T}}-\bar{f}_{k}^{i}C_{k}^{i}M_{k, k}^{i, j}+\nonumber\\~~~\bar{f}_{k}^{i}\bar{f}_{k}^{j}C_{k}^{i}\Gamma _{k, k}^{i, j}C_{k}^{j{\rm T}})L_{k}^{j{\rm T}} $
(12) 其中, 各量递推公式为:
$ S_{k}^{i}=[H{{_{k, k}^{i}}^{{\rm T}}}-M{{_{k, k}^{i, i}}^{{\rm T}}}+\bar{f}_{k}^{i}C_{k}^{i}{{(\Gamma_{k, k}^{i, i}-\Lambda_{k, k}^{i})}^{{\rm T}}}]{{A}_{\bar{g}, k}}^{{\rm T}} $
(13) $ T_{k}^{i}=\tilde{f}_{k}^{i}C_{k}^{i}{{X}_{k, k}}C{{_{k}^{i}}^{{\rm T}}}-\bar{f}_{k}^{i}M{{_{k, k}^{i, i}}^{{\rm T}}}C{{_{k}^{i}}^{{\rm T}}}-\bar{f}_{k}^{i}C_{k}^{i}M_{k, k}^{i, i}+\nonumber\\ {{(\bar{f}_{k}^{i})}^{2}}C_{k}^{i}\Gamma _{k, k}^{i, i}C{{_{k}^{i}}^{{\rm T}}}+V_{k}^{i} $
(14) $ {{X}_{k, k}}={{A}_{k-1}}{{X}_{k-1, k-1}}A_{k-1}^{{\rm T}}+{{{\bar{g}}}_{k-1}}({{A}_{k-1}}{{X}_{k-1, k-1}}\times\nonumber\\ \hat{A}_{k-1}^{{\rm T}} +{{{\hat{A}}}_{k-1}}{{X}_{k-1, k-1}}A_{k-1}^{{\rm T}})+{{{\tilde{g}}}_{k-1}}{{{\hat{A}}}_{k-1}}\nonumber\times\\ {{X}_{k-1, k-1}}\hat{A}_{k-1}^{{\rm T}}+{{W}_{k}} $
(15) $ Y_{k}^{i, j}=\bar{f}_{k}^{i}\bar{f}_{k}^{j}C_{k}^{i}{{X}_{k, k}}C{{_{k}^{j}}^{{\rm T}}} $
(16) $ H_{k}^{i}=\bar{f}_{k}^{i}{{X}_{k, k}}C{{_{k}^{i}}^{{\rm T}}} $
(17) $ \Lambda _{k, k}^{i}={{A}_{\bar{g}, k-1}}(H_{k-1, k-1}^{i}-\bar{f}_{k-1}^{i}\Lambda _{k-1, k-1}^{i}C{{_{k-1}^{i}}^{{\rm T}}}) \times\nonumber\\ L_{k-1}^{i{\rm T}} +{{A}_{\bar{g}, k-1}}\Lambda _{k-1, k-1}^{i}{{A}_{\bar{g}, k-1}}^{{\rm T}} $
(18) $ M_{k, k}^{i, j}=\bar{f}_{k}^{j}\Lambda {{_{k, k}^{i}}^{{\rm T}}}C{{_{k}^{j}}^{{\rm T}}} $
(19) $ \Gamma _{k, k}^{i, j}=L_{k-1}^{i}(Y_{k-1}^{i, j}-\bar{f}_{k-1}^{j}M{{_{k-1, k-1}^{j, i}}^{{\rm T}}}C{{_{k-1}^{j}}^{{\rm T}}}-\nonumber\\~~~~\bar{f}_{k-1}^{i}C_{k-1}^{i}M_{k-1, k-1}^{i, j}+\bar{f}_{k-1}^{i}\bar{f}_{k-1}^{j}C_{k-1}^{i}\Gamma _{k-1, k-1}^{i, j}\times \nonumber\\~~~~C{{_{k-1}^{j}}^{{\rm T}}})L{{_{k-1}^{j}}^{{\rm T}}}+{{A}_{\bar{g}, k-1}}\Gamma _{k-1, k-1}^{i, j}{{A}_{\bar{g}, k-1}}^{{\rm T}} +\nonumber\\~~~~L_{k-1}^{i}(M{{_{k-1, k-1}^{j, i}}^{{\rm T}}}-\bar{f}_{k-1}^{i}C_{k-1}^{i}\Gamma _{k-1, k-1}^{i, j}){{A}_{\bar{g}, k-1}}^{{\rm T}} + \nonumber\\~~~~{{A}_{\bar{g}, k-1}}(M_{k-1, k-1}^{i, j}-\bar{f}_{k-1}^{j}\Gamma _{k-1, k-1}^{i, j}C{{_{k-1}^{j}}^{{\rm T}}})L{{_{k-1}^{j}}^{{\rm T}}} $
(20) 并且, 根据假设2, ${{X}_{0, 0}}$ 为已知, 其他变量初值设置如下:
$ \left\{ {\begin{array}{l} Y_{0, 0}^{i, j}=\bar{f}_{0}^{i}\bar{f}_{0}^{j}C_{0}^{i}{{X}_{0, 0}}C{{_{0}^{j}}^{{\rm T}}}\nonumber\\ H_{0, 0}^{i}=\bar{f}_{0}^{i}{{X}_{0, 0}}C{{_{0}^{i}}^{{\rm T}}}\nonumber\\ \Lambda _{0, 0}^{i}={\rm E}\{{{{\pmb{\textbf{x}}}}_{0}}\}{\rm E}\{{{\pmb{\textbf{x}}}_{0}}^{{\rm T}}\}\nonumber\\ M_{0, 0}^{i, j}=\bar{f}_{0}^{j}\Lambda {{_{0, 0}^{i}}^{{\rm T}}}C{{_{0}^{j}}^{{\rm T}}}\nonumber\\ \Gamma _{0, 0}^{i, j}={\rm E}\{{{\pmb{\textbf{x}}}_{0}}\}{\rm E}\{{{\pmb{\textbf{x}}}_{0}}^{{\rm T}}\} \nonumber\\ \end{array}} \right. $
(21) 证明.下面证明式(10), 由式(1)~(3)可得:
$ \tilde{\pmb{\textbf{x}}}_{k+1}^{i}={{\pmb{\textbf{x}}}_{k+1}}-\hat{\pmb{\textbf{x}}}_{k+1}^{i}=\nonumber\\ ({{A}_{k}}+{{{\bar{g}}}_{k}}{{{\hat{A}}}_{k}})\tilde{\pmb{\textbf{x}}}_{k}^{i}+({{g}_{k}}-{{{\bar{g}}}_{k}}){{{\hat{A}}}_{k}}{{\pmb{\textbf{x}}}_{k}}+{{\pmb{\textbf{w}}}_{k}}-\nonumber\\ L_{k}^{i}(\pmb{\textbf{y}}_{k}^{i}-\bar{f}_{k}^{i}C_{k}^{i}\hat{\pmb{\textbf{x}}}_{k}^{i}) $
(22) 结合式(9)以及假设1和假设2, 可得:
$ P_{k+1}^{i, i}:={\rm E}\{({{\pmb{\textbf{x}}}_{k+1}}-\hat{\pmb{\textbf{x}}}_{k+1}^{i}){{({{\pmb{\textbf{x}}}_{k+1}}-\hat{\pmb{\textbf{x}}}_{k+1}^{i})}^{{\rm T}}}\}=\nonumber\\ {{A}_{\bar{g}, k}}P_{k}^{i, i}{{A}_{\bar{g}, k}}^{{\rm T}}+({{{\tilde{g}}}_{k}}-\bar{g}_{k}^{2}){{{\hat{A}}}_{k}}{{X}_{k, k}}\hat{A}_{k}^{{\rm T}}-\nonumber\\ {{A}_{\bar{g}, k}}[H_{k, k}^{i}-M_{k, k}^{i, i}+\bar{f}_{k}^{i}(\Gamma _{k, k}^{i, i}-\Lambda _{k, k}^{i})C{{_{k}^{i}}^{{\rm T}}}]L{{_{k}^{i}}^{{\rm T}}}-\nonumber\\ L_{k}^{i}{{[H_{k, k}^{i}-M_{k, k}^{i, i}+\bar{f}_{k}^{i}(\Gamma _{k, k}^{i, i}-\Lambda _{k, k}^{i})C{{_{k}^{i}}^{{\rm T}}}]}^{{\rm T}}}{{A}_{\bar{g}, k}}^{{\rm T}} +\nonumber\\ L_{k}^{i}[\tilde{f}_{k}^{i}C_{k}^{i}{{X}_{k, k}}C{{_{k}^{i}}^{{\rm T}}}+{{(\bar{f}_{k}^{i})}^{2}}C_{k}^{i}\Gamma _{k, k}^{i, i}C{{_{k}^{i}}^{{\rm T}}}-\nonumber\\ \bar{f}_{k}^{i}C_{k}^{i}M_{k, k}^{i, i}-\bar{f}_{k}^{i}M{{_{k, k}^{i, i}}^{{\rm T}}}C{{_{k}^{i}}^{{\rm T}}}+V_{k}^{i}]L{{_{k}^{i}}^{\rm T}}+{{W}_{k}} \nonumber\\ $
(23) 下面令
$ S_{k}^{i}=[H{{_{k, k}^{i}}^{{\rm T}}}-M{{_{k, k}^{i, i}}^{{\rm T}}}+\bar{f}_{k}^{i}C_{k}^{i}{{(\Gamma _{k, k}^{i, i}-\Lambda _{k, k}^{i})}^{{\rm T}}}]{{A}_{\bar{g}, k}}^{{\rm T}} $
(24) $ T_{k}^{i}=\tilde{f}_{k}^{i}C_{k}^{i}{{X}_{k, k}}C{{_{k}^{i}}^{{\rm T}}}-\bar{f}_{k}^{i}M{{_{k, k}^{i, i}}^{{\rm T}}}C{{_{k}^{i}}^{{\rm T}}}-\bar{f}_{k}^{i}C_{k}^{i}M_{k, k}^{i, i} +\nonumber\\ {{(\bar{f}_{k}^{i})}^{2}}C_{k}^{i}\Gamma _{k, k}^{i, i}C{{_{k}^{i}}^{{\rm T}}}+V_{k}^{i} $
(25) 将式(24)和式(25)代入式(23)可得:
$ P_{k+1}^{i, i}={{A}_{\bar{g}, k}}P_{k}^{i, i}{{A}_{\bar{g}, k}}^{{\rm T}}+({{{\tilde{g}}}_{k}}-\bar{g}_{k}^{2}){{{\hat{A}}}_{k}}{{X}_{k, k}}\hat{A}_{k}^{{\rm T}}+{{W}_{k}}-\nonumber\\ S{{_{k}^{i}}^{{\rm T}}}L{{_{k}^{i}}^{{\rm T}}}-L_{k}^{i}S_{k}^{i}+L_{k}^{i}T_{k}^{i}L{{_{k}^{i}}^{{\rm T}}}+{{W}_{k}}=\nonumber\\ (L_{k}^{i}T_{k}^{i}-S{{_{k}^{i}}^{{\rm T}}}){{(T_{k}^{i})}^{-1}}{{(L_{k}^{i}T_{k}^{i}-S{{_{k}^{i}}^{{\rm T}}})}^{-1}}+{{W}_{k}}+\nonumber\\ {{A}_{\bar{g}, k}}P_{k}^{i, i}{{A}_{\bar{g}, k}}^{{\rm T}}+({{{\tilde{g}}}_{k}}-\bar{g}_{k}^{2}){{{\hat{A}}}_{k}}{{X}_{k, k}}\hat{A}_{k}^{{\rm T}}-\nonumber\\ S{{_{k}^{i}}^{{\rm T}}}{{(T_{k}^{i})}^{-1}}S_{k}^{i} $
(26) 令 $L_{k}^{i}=S{{_{k}^{i}}^{{\rm T}}}{{(T_{k}^{i})}^{-1}}$ , 则式(23)中 $P_{k+1}^{i, i}$ 最小, 得到式(11)和式(12).
需要特别指出的是, 定理2与文献[13]中提出的定理1在形式上有很多相似之处, 这是因为本文求取传感器 $i$ 的局部最优状态估计和文献[13]求取全局融合估计, 都是基于最小方差估计方法, 中间变量的定义和结论推导在形式上有相似之处, 但是二者各自定义的中间变量有明显不同的意义.本文采用的是分布式融合估计, 即先利用传感器 $i$ 在 $k$ 时刻的测量数据 $\pmb{\textbf{y}}_{k}^{i}$ 得到局部最优估计 $\hat{\pmb{\textbf{x}}}_{k}^{i}$ , 时延和丢包发生在 $\hat{\pmb{\textbf{x}}}_{k}^{i}$ 传送至融合中心的过程中, 定理2求取的是局部最优估计, 且式(9)中各中间变量是基于传感器 $i$ 定义的, 未加入时延和丢包环节, 而文献[13]中定理1虽采用与本文中式(3)形式一致的滤波器结构, 但其采用的是集中式融合估计方法, 融合中心直接利用所有传感器的测量数据进行融合估计, 时延和丢包发生在测量数据 $\pmb{\textbf{y}}_{k}^{i}$ 传送至融合中心的过程中, 所定义的各中间变量是基于全局的, 具有明显的时延特征.
3. 分布式融合估计器
在得到主要结论之前, 首先介绍如下两个引理.
引理1.定义矩阵 $A_{\bar{g}, \bar{f}, m}^{i}:=({{A}_{m}}+{{\bar{g}}_{m}}{{\hat{A}}_{m}})-\bar{f}_{m}^{i}L_{m}^{i}C_{m}^{i}$ , 并假定算子 $\prod_{e=1}^{0}{(\cdot)}={{I}_{n}}$ .则对于 $\Gamma_{m, n}^{i, j}:={\rm E}\{\hat{\pmb{\textbf{x}}}_{m}^{i}\hat{\pmb{\textbf{x}}}{{_{n}^{j}}^{{\rm T}}}\}~(m\ge0, n\ge0)$ , 有
1) 情况1: $m=n$ 时,
$ \Gamma _{m, n}^{i, j}=\Gamma _{m, m}^{i, j} $
(27) 2) 情况2: $m-n=1$ 时,
$ \Gamma _{m, n}^{i, j}=A_{\bar{g}, \bar{f}, m-1}^{i}\Gamma _{m-1, m-1}^{i, j}+\bar{f}_{m-1}^{i}L_{m-1}^{i}C_{m-1}^{i}\times\nonumber\\ \Lambda_{m-1, m-1}^{j} $
(28) 3) 情况3: $m-n\ge 2$ 时,
$ \Gamma _{m, n}^{i, j}=\bar{f}_{m-1}^{i}L_{m-1}^{i}C_{m-1}^{i}(\prod\limits_{e=1}^{m-n-1}{{{A}_{\bar{g}, m-1-e}}})\Lambda _{n, n}^{j} +\nonumber\\ (\prod\limits_{f=1}^{m-n}{A_{\bar{g}, \bar{f}, m-f}^{i})}\Gamma _{n, n}^{i, j}\sum\limits_{c=2}^{m-n}{[\bar{f}_{m-c}^{i}(\prod\limits_{d=1}^{c-1}{A_{\bar{g}, \bar{f}, m-d}^{i}})}+\nonumber\\ L_{m-c}^{i}C_{m-c}^{i}(\prod\limits_{h=1}^{m-n-c}{{{A}_{\bar{g}, m-c-h}})\Lambda _{n, n}^{j}]} $
(29) 4) 情况4: $n-m=1$ 时,
$ \Gamma _{m, n}^{i, j}=\Gamma _{n-1, n-1}^{i, j}A{{_{\bar{g}, \bar{f}, n-1}^{j}}^{{\rm T}}}+\bar{f}_{n-1}^{j}\Lambda {{_{n-1, n-1}^{i}}^{{\rm T}}} \times\nonumber\\ C{{_{n-1}^{j}}^{{\rm T}}}L{{_{n-1}^{j}}^{{\rm T}}} $
(30) 5) 情况5: $n-m\ge 2$ 时,
$ \Gamma _{m, n}^{i, j}\!=\! \bar{f}_{n-1}^{j}\Lambda {{_{m, m}^{i}}^{{\rm T}}}(\prod\limits_{e=1}^{n-m-1}{{{A}_{\bar{g}, n-1-e}}{{)}^{{\rm T}}}}C{{_{n-1}^{j}}^{{\rm T}}}L{{_{n-1}^{j}}^{{\rm T}}} +\nonumber\\ \sum\limits_{c=2}^{n-m}{[\bar{f}_{n-c}^{j}\Lambda {{_{m, m}^{i}}^{{\rm T}}}(\prod\limits_{h=1}^{n-m-c}{{{A}_{\bar{g}, n-c-h}}{{)}^{{\rm T}}}C{{_{n-c}^{j}}^{{\rm T}}}}}\times \nonumber\\ L{{_{n-c}^{j}}^{{\rm T}}}{{(\prod\limits_{d=1}^{c-1}{A_{\bar{g}, \bar{f}, n-d}^{j}})}^{{\rm T}}}]+\Gamma _{m, m}^{i, j}(\prod\limits_{f=1}^{n-m}{A_{\bar{g}, \bar{f}, n-f}^{j}{{)}^{{\rm T}}}} \nonumber\\ $
(31) 对于 $\Lambda_{m, n}^{i}:={\rm E}\{{{\pmb{\textbf{x}}}_{m}}\hat{\pmb{\textbf{x}}}{{_{n}^{i}}^{{\rm T}}}\}$ , 有:
1) 情况1: $m=n$ 时,
$ \Lambda _{m, n}^{i}=\Lambda _{m, m}^{i} $
(32) 2) 情况2: $m-n\ge1$ 时,
$ \Lambda _{m, n}^{i}=(\prod\limits_{\tau=1}^{m-n}{{{A}_{\bar{g}, m-1}}})\Lambda _{n, n}^{i} $
(33) 3) 情况3: $n-m=1$ 时,
$ \Lambda _{m, n}^{i}=H_{n-1, n-1}^{i}L{{_{n-1}^{i}}^{{\rm T}}}+\Lambda _{n-1, n-1}^{i}A{{_{\bar{g}, \bar{f}, n-1}^{i}}^{{\rm T}}} $
(34) 4) 情况4: $n-m\ge 2$ 时,
$ \Lambda _{m, n}^{i}=\bar{f}_{n-1}^{i}{{X}_{m, m}}(\prod\limits_{e=1}^{n-m-1}{{{A}_{\bar{g}, n-1-e}}})^{\rm T}C{{_{n-1}^{i}}^{{\rm T}}}L{{_{n-1}^{i}}^{{\rm T}}} +\nonumber\\ \sum\limits_{c=2}^{n-m}{[\bar{f}_{n-c}^{i}{{X}_{m, m}}(\prod\limits_{h=1}^{n-m-c}{{{A}_{\bar{g}, n-c-h}}{{)}^{{\rm T}}}C{{_{n-c}^{i}}^{{\rm T}}}}} \times \nonumber\\ L{{_{n-c}^{i}}^{{\rm T}}}{{(\prod\limits_{d=1}^{c-1}{A_{\bar{g}, \bar{f}, n-d}^{i}})}^{{\rm T}}}]+\Lambda _{m, m}^{i} \times \nonumber\\ (\prod\limits_{f=1}^{n-m}{A_{\bar{g}, \bar{f}, n-f}^{i}{{)}^{{\rm T}}}} $
(35) 由于引理1证明过程较繁琐, 为增加文章可读性, 具体证明过程见附录A.
引理 2定义如下变量:
$~~\left\{ {\begin{array}{l} \pmb{\textbf{r}}_{m+1}^{i}:=\!\!\sum\limits_{t=0}^{L}{[\delta (\tau _{m+1}^{i}, t)\prod\limits_{\tau=1}^{t}{({{A}_{m+1-\tau }}}}+{{{\bar{g}}}_{m+1-\tau }} \times\nonumber\\~~~~~~~~~~~~~~~{{{\hat{A}}}_{m+1-\tau }})\hat{\pmb{\textbf{x}}}_{m+1-t}^{i}] \nonumber\\ Y_{r, m, n}^{i, j}:={\rm E}\{\pmb{\textbf{y}}_{m}^{i}\hat{\pmb{\textbf{x}}}{{_{r, n}^{j}}^{{\rm T}}}\}, R_{m, n}^{i, j}:={\rm E}\{\pmb{\textbf{r}}_{m}^{i}\pmb{\textbf{r}}{{_{n}^{j}}^{{\rm T}}}\} \nonumber\\ R_{y, m, n}^{i, j}:={\rm E}\{\pmb{\textbf{y}}_{m}^{i}\pmb{\textbf{r}}{{_{n}^{j}}^{{\rm T}}}\}, R_{x, m, n}^{i}:={\rm E}\{\pmb{\textbf{r}}_{m}^{i}{{\pmb{\textbf{x}}}_{n}}^{{\rm T}}\} \nonumber\\ \bar{R}_{x, m, n}^{i, j}:={\rm E}\{\hat{\pmb{\textbf{x}}}_{m}^{i}\pmb{\textbf{r}}{{_{n}^{j}}^{{\rm T}}}\}, \hat{R}_{x, m, n}^{i, j}:={\rm E}\{\pmb{\textbf{r}}_{m}^{i}\hat{\pmb{\textbf{x}}}{{_{r, n}^{j}}^{{\rm T}}}\} \nonumber\\ X_{r, m, n}^{i, j}:={\rm E}\{\hat{\pmb{\textbf{x}}}_{r, m}^{i}\hat{\pmb{\textbf{x}}}{{_{r, n}^{j}}^{{\rm T}}}\}, \bar{X}_{r, m, n}^{i, j}:={\rm E}\{\hat{\pmb{\textbf{x}}}_{m}^{i}\pmb{\textbf{r}}{{_{n}^{j}}^{{\rm T}}}\} \nonumber\\ \hat{X}_{r, m, n}^{i}:={\rm E}\{{{\pmb{\textbf{x}}}_{m}}\hat{\pmb{\textbf{x}}}{{_{r, n}^{i}}^{{\rm T}}}\}, \hat{X}_{r, m, n}^{i, j}:={\rm E}\{\hat{\pmb{\textbf{x}}}_{m}^{i}\hat{\pmb{\textbf{x}}}{{_{r, n}^{j}}^{{\rm T}}}\} \nonumber\\ \Phi _{m, k}^{i}:=\sum\limits_{m=0}^{L}{\delta (\tau _{k}^{i}, m), \bar{\Phi }_{m, k}^{i}:=1-\sum\limits_{m=0}^{L}{\delta (\tau _{k}^{i}, m)}} \nonumber\\ p_{L, m, k}^{i}:=\sum\limits_{m=0}^{L}{p_{m, k}^{i}, ~\bar{p}_{L, m, k}^{i}:=1-\sum\limits_{m=0}^{L}{p_{m, k}^{i}}} \end{array}} \right. $
(36) 则有下式成立:
$ R_{k+1, k+1}^{i, j}=\left\{ \begin{matrix} \sum\limits_{m=0}^{L}{\sum\limits_{n=0}^{L}{[p_{m, k+1}^{i}p_{n, k+1}^{j}(\prod\limits_{\tau=1}^{m}{{{A}_{\bar{g}, k+1-\tau }})}}}\times \\ \Gamma _{k+1-m, k+1-n}^{i, j}(\prod\limits_{s=1}^{n}{{{A}_{\bar{g}, k+1-s}}{{)}^{\text{T}}}}], ~~i\ne j \\ \sum\limits_{m=0}^{L}{[p_{m, k+1}^{i}(\prod\limits_{\tau=1}^{m}{{{A}_{\bar{g}, k+1-\tau }})}\Gamma _{k+1-m, k+1-m}^{i, i}}\times \\ (\prod\limits_{s=1}^{m}{{{A}_{\bar{g}, k+1-\tau }}{{)}^{\text{T}}}]}, ~~i=j \\ \end{matrix} \right. $
(37) $ \hat{R}_{x, k+1, k}^{i, j}=\sum\limits_{m=0}^{L}{[p_{m, k+1}^{i}(\prod\limits_{\tau=1}^{m}{{{A}_{\bar{g}, k+1-\tau }})}}\hat{X}_{r, k+1-m, k}^{i, j}] $
(38) $ R_{x, k+1, k}^{i}=\sum\limits_{m=0}^{L}{[p_{m, k+1}^{i}}(\prod\limits_{\tau=1}^{m}{{{A}_{\bar{g}, k+1-\tau }})\Lambda {{_{k, k+1-m}^{i}}^{{\rm T}}}]} $
(39) $ X_{r, k, k}^{i, j}=\nonumber\\ \left\{ {\begin{array}{l} R_{k, k}^{i, j}+\bar{p}_{L, m, k}^{i}{{A}_{\bar{g}, k-1}}\hat{R}{{_{x, k, k-1}^{j, i}}^{{\rm T}}} +\nonumber\\ \quad\bar{p}_{L, n, k}^{j}\hat{R}_{x, k, k-1}^{i, j}{{A}_{\bar{g}, k-1}}^{{\rm T}}+\bar{p}_{L, m, k}^{i} \times\nonumber\\ \quad\bar{p}_{L, n, k}^{j}{{A}_{\bar{g}, k-1}}X_{r, k-1, k-1}^{i, j}{{A}_{\bar{g}, k-1}}^{{\rm T}}, \, i\ne j \nonumber\\[5mm] R_{k, k}^{i, i}+\bar{p}_{L, m, k}^{i}{{A}_{\bar{g}, k-1}}\hat{R}{{_{x, k, k-1}^{i, i}}^{{\rm T}}} +\nonumber\\ \quad\bar{p}_{L, m, k}^{i}\hat{R}_{x, k, k-1}^{i, i}{{A}_{\bar{g}, k-1}}^{{\rm T}}+\bar{p}_{L, m, k}^{i}\times\nonumber\\ \quad{{A}_{\bar{g}, k-1}}X_{r, k-1, k-1}^{i, i}{{A}_{\bar{g}, k-1}}^{{\rm T}}, ~~~~~~~~~i=j \end{array}} \right. $
(40) $ \hat{X}_{r, k, k}^{i}=\bar{p}_{L, m, k}^{i}{{A}_{\bar{g}, k-1}}\hat{X}_{r, k-1, k-1}^{i}{{A}_{\bar{g}, k-1}}^{{\rm T}}+\nonumber\\ {{A}_{\bar{g}, k-1}}R{{_{x, k, k-1}^{i}}^{{\rm T}}} $
(41) $ \hat{X}_{r, k+1-m, k}^{i, j}=\nonumber\\ \left\{ {\begin{array}{l} L_{k}^{i}Y_{r, k, k}^{i, j}+A_{\bar{g}, \bar{f}, k}^{i}\hat{X}_{r, k, k}^{i, j}, ~~~~~~~~~~~~~~~~~~~~~~~m=0 \nonumber\\[4mm] L_{k-1}^{i}R_{y, k-1, k}^{i, j}+A_{\bar{g}, \bar{f}, k-1}^{i}\bar{X}_{r, k-1, k}^{i, j} +\nonumber\\ L_{k-1}^{i}\bar{p}_{L, n, k}^{j}Y_{r, k-1, k-1}^{i, j}{{A}_{\bar{g}, k-1}}^{{\rm T}} +\nonumber\\ A_{\bar{g}, \bar{f}, k-1}^{i}\bar{p}_{L, n, k}^{j}\times \hat{X}_{r, k-1, k-1}^{i, j}{{A}_{\bar{g}, k-1}}^{{\rm T}}, ~~~m=1 \nonumber\\[4mm] \sum\limits_{\tau=1}^{m-1}{[\bar{X}_{r, k+1-m, k-\tau }^{i, j}}{(\prod\limits_{s=1}^{\tau }{\bar{p}_{L, n, k+1-\tau }^{j}}{{A}_{\bar{g}, k-\tau }})^{\rm T}}]\times\nonumber\\ \hat{X}_{r, k+1-m, k+1-m}^{i, j}(\prod\limits_{t=1}^{m-1}{\bar{p}_{L, n, k+1-t}^{j}{{A}_{\bar{g}, k-t}}{{)}^{{\rm T}}}} +\nonumber\\ \bar{X}_{r, k+1-m, k}^{i, j}, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~m>1\nonumber\\ \end{array}} \right. $
(42) $ Y_{r, k, k}^{i, j}=\bar{f}_{k}^{i}C_{k}^{i}\hat{X}_{r, k, k}^{j} $
(43) $ R_{y, k, k+1}^{i, j}=\bar{f}_{k}^{i}C_{k}^{i}R{{_{x, k, k+1}^{j}}^{{\rm T}}} $
(44) $ \bar{X}_{r, m, n}^{i, j}=\sum\limits_{s=0}^{L}{[p_{s, n}^{i}\Gamma _{m, n-s}^{i, j}(\prod\limits_{\tau=1}^{s}{{{A}_{\bar{g}, n-\tau }}{{)}^{{\rm T}}}]}} $
(45) 由于引理2证明过程较繁琐, 为增加文章可读性, 具体证明过程见附录B.
定义 $\tilde{\pmb{\textbf{x}}}_{r, k+1}^{i}:={{\pmb{\textbf{x}}}_{k+1}}-\hat{\pmb{\textbf{x}}}_{r, k+1}^{i}$ , 重组估计交叉误差协方差矩阵为 $P_{r, k+1}^{i, j}:={\rm E}\{\tilde{\pmb{\textbf{x}}}_{r, k+1}^{i}\tilde{\pmb{\textbf{x}}}{{_{r, k+1}^{j}}^{{\rm T}}}\}$ , 根据引理1和引理2的结论, 以下定理给出 $P_{r, k+1}^{i, j}$ 的计算方法.
定理3.基于式(36)所定义的变量, $P_{r, k+1}^{i, j}$ 递推公式为:
$ P_{r, k+1}^{i, j}=\nonumber\\ \left\{ {\begin{array}{l} ({{{\tilde{g}}}_{k}}-\bar{g}_{k}^{2}){{{\hat{A}}}_{k}}{{X}_{k, k}}{{{\hat{A}}}_{k}}^{{\rm T}}+{{W}_{k}}+R_{k+1, k+1}^{i, j}-\nonumber\\ \quad R_{x, k+1, k}^{i}{{A}_{\bar{g}, k}}^{{\rm T}}+\hat{R}_{x, k+1, k}^{i, j}{{A}_{\bar{g}, k}}^{{\rm T}}-\nonumber\\ \quad p_{L, n, k+1}^{j}\hat{R}_{x, k+1, k}^{i, j}{{A}_{\bar{g}, k}}^{{\rm T}}-{{A}_{\bar{g}, k}}\hat{R}{{_{x, k+1, k}^{j, i}}^{{\rm T}}} +\nonumber\\ \quad {{A}_{\bar{g}, k}}P_{r, k}^{i, j}{{A}_{\bar{g}, k}}^{{\rm T}}+p_{L, n, k+1}^{j}{{A}_{\bar{g}, k}}\hat{X}_{r, k, k}^{j}{{A}_{\bar{g}, k}}^{{\rm T}}-\nonumber\\ \quad p_{L, n, k+1}^{j}{{A}_{\bar{g}, k}}X_{r, k, k}^{i, j}{{A}_{\bar{g}, k}}^{{\rm T}}-p_{L, m, k+1}^{i}{{A}_{\bar{g}, k}} \times\nonumber\\ \quad \hat{R}{{_{x, k+1, k}^{j, i}}^{{\rm T}}}+p_{L, m, k+1}^{i}{{A}_{\bar{g}, k}}X_{r, k, k}^{i, j}{{A}_{\bar{g}, k}}^{{\rm T}}-\nonumber\\ \quad p_{L, m, k+1}^{i}{{A}_{\bar{g}, k}}\hat{X}{{_{r, k, k}^{i}}^{{\rm T}}}{{A}_{\bar{g}, k}}^{{\rm T}} +\nonumber\\ \quad p_{L, m, k+1}^{i}p_{L, n, k+1}^{j}{{A}_{\bar{g}, k}}X_{r, k, k}^{i, j}{{A}_{\bar{g}, k}}^{{\rm T}}, ~~~~~~~~i\ne j\nonumber\\[4mm] ({{{\tilde{g}}}_{k}}-\bar{g}_{k}^{2}){{{\hat{A}}}_{k}}{{X}_{k, k}}{{{\hat{A}}}_{k}}^{{\rm T}}+{{W}_{k}}+R_{k+1, k+1}^{i, i}-\nonumber\\ \quad R_{x, k+1, k}^{i}{{A}_{\bar{g}, k}}^{{\rm T}}+\hat{R}_{x, k+1, k}^{i, i}{{A}_{\bar{g}, k}}^{{\rm T}}-\nonumber\\ \quad p_{L, m, k+1}^{i}\hat{R}_{x, k+1, k}^{i, i}{{A}_{\bar{g}, k}}^{{\rm T}}-{{A}_{\bar{g}, k}}\hat{R}{{_{x, k+1, k}^{i, i}}^{{\rm T}}} +\nonumber\\ \quad {{A}_{\bar{g}, k}}P_{r, k}^{i, i}{{A}_{\bar{g}, k}}^{{\rm T}}+p_{L, m, k+1}^{i}{{A}_{\bar{g}, k}}\hat{X}_{r, k, k}^{i}{{A}_{\bar{g}, k}}^{{\rm T}}-\nonumber\\ \quad p_{L, m, k+1}^{i}{{A}_{\bar{g}, k}}\hat{R}{{_{x, k+1, k}^{i, i}}^{{\rm T}}}-\nonumber\\ \quad p_{L, m, k+1}^{i}{{A}_{\bar{g}, k}}\hat{X}{{_{r, k, k}^{i}}^{{\rm T}}}{{A}_{\bar{g}, k}}^{{\rm T}} +\nonumber\\ \quad p_{L, m, k+1}^{i}{{A}_{\bar{g}, k}}X_{r, k, k}^{i, i}{{A}_{\bar{g}, k}}^{{\rm T}}, ~~~~~~~~~~~~~~~~~~~~~~i=j \end{array}} \right. $
(46) 证明.由式(1)和式(8)可得:
$ \tilde{{\pmb{\textbf{x}}}}_{r, k+1}^{i}={{\pmb{\textbf{x}}}_{k+1}}-\hat{\pmb{\textbf{x}}}_{r, k+1}^{i}=\nonumber\\ {{A}_{g, k}}{{\pmb{\textbf{x}}}_{k}}+{{\pmb{\textbf{w}}}_{k}}-\pmb{\textbf{r}}_{k+1}^{i}-{{A}_{\bar{g}, k}}\hat{\pmb{\textbf{x}}}_{r, k}^{i}+\Phi _{m, k+1}^{i}{{A}_{\bar{g}, k}}\hat{\pmb{\textbf{x}}}_{r, k}^{i}=\nonumber\\ ({{A}_{g, k}}-{{A}_{\bar{g}, k}}){{\pmb{\textbf{x}}}_{k}}-\pmb{\textbf{r}}_{k+1}^{i}+{{A}_{\bar{g}, k}}\tilde{\pmb{\textbf{x}}}_{r, k}^{i} +\nonumber\\ \Phi _{m, k+1}^{i}{{A}_{\bar{g}, k}}\hat{\pmb{\textbf{x}}}_{r, k}^{i}+{{\pmb{\textbf{w}}}_{k}} $
(47) 则可得:
1) 当 $i\ne j$ 时,
$ P_{r, k+1}^{i, j}=\nonumber\\ {\rm E}\{\tilde{\pmb{\textbf{x}}}_{\pmb{\textbf{r}}, k+1}^{i}\tilde{\pmb{\textbf{x}}}{{_{r, k+1}^{j}}^{{\rm T}}}\}=\nonumber\\ {\rm E}\{[({{A}_{g, k}}-{{A}_{\bar{g}, k}}){{\pmb{\textbf{x}}}_{k}}-\pmb{\textbf{r}}_{k+1}^{i}+{{A}_{\bar{g}, k}}\tilde{\pmb{\textbf{x}}}_{r, k}^{i} +\nonumber\\ \Phi _{m, k+1}^{i}{{A}_{\bar{g}, k}}\hat{\pmb{\textbf{x}}}_{r, k}^{i}+{{\pmb{\textbf{w}}}_{k}}][({{A}_{g, k}}-{{A}_{\bar{g}, k}}){{\pmb{\textbf{x}}}_{k}}-\nonumber\\ {\textbf{r}}_{k+1}^{j}+{{A}_{\bar{g}, k}}\tilde{\pmb{\textbf{x}}}_{r, k}^{j}+\Phi _{n, k+1}^{j}{{A}_{\bar{g}, k}}\hat{\pmb{\textbf{x}}}_{r, k}^{j}+{{\pmb{\textbf{w}}}_{k}}{{]}^{{\rm T}}}\}=\nonumber\\ ({{{\tilde{g}}}_{k}}-\bar{g}_{k}^{2}){{{\hat{A}}}_{k}}{{X}_{k, k}}{{{\hat{A}}}_{k}}^{{\rm T}}+{{W}_{k}}+{\rm E}\{\pmb{\textbf{r}}_{k+1}^{i}\pmb{\textbf{r}}{{_{k+1}^{j}}^{{\rm T}}}\}-\nonumber\\ {\rm E}\{\pmb{\textbf{r}}_{k+1}^{i}\tilde{\pmb{\textbf{x}}}{{_{r, k}^{j}}^{{\rm T}}}\}{{A}_{\bar{g}, k}}^{{\rm T}}-{{A}_{\bar{g}, k}}{\rm E}\{\tilde{\pmb{\textbf{x}}}_{r, k}^{i}\pmb{\textbf{r}}{{_{k+1}^{j}}^{{\rm T}}}\}-\nonumber\\ {\rm E}\{\Phi _{n, k+1}^{j}\}{\rm E}\{\pmb{\textbf{r}}_{k+1}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k}^{j}}^{{\rm T}}}\}{{A}_{\bar{g}, k}}^{{\rm T}}+{{A}_{\bar{g}, k}}\times\nonumber\\ {\rm E}\{\tilde{\pmb{\textbf{x}}}_{r, k}^{i}\tilde{\pmb{\textbf{x}}}{{_{r, k}^{j}}^{{\rm T}}}\}{{A}_{\bar{g}, k}}^{{\rm T}}+{{A}_{\bar{g}, k}}{\rm E}\{\Phi _{n, k+1}^{j}\} \times\nonumber\\ {\rm E}\{\tilde{\pmb{\textbf{x}}}_{r, k}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k}^{j}}^{{\rm T}}}\}{{A}_{\bar{g}, k}}^{{\rm T}}-{{A}_{\bar{g}, k}}{\rm E}\{\Phi _{m, k+1}^{i}\} \times \nonumber\\ {\rm E}\{\tilde{\pmb{\textbf{x}}}_{r, k}^{i}\pmb{\textbf{r}}{{_{k+1}^{j}}^{{\rm T}}}\}+{{A}_{\bar{g}, k}}{\rm E}\{\Phi _{m, k+1}^{i}\}\times \nonumber\\ {\rm E}\{\hat{\pmb{\textbf{x}}}_{r, k}^{i}\tilde{\pmb{\textbf{x}}}{{_{r, k}^{j}}^{{\rm T}}}\}{{A}_{\bar{g}, k}}^{{\rm T}}+{{A}_{\bar{g}, k}}{\rm E}\{\Phi _{m, k+1}^{i}\Phi _{n, k+1}^{j}\} \times \nonumber\\ {\rm E}\{\hat{\pmb{\textbf{x}}}_{r, k}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k}^{j}}^{{\rm T}}}\}{{A}_{\bar{g}, k}}^{{\rm T}}\nonumber\\ $
(48) 2) 当 $i=j$ 时,
$ P_{r, k+1}^{i, j}=\nonumber\\ ({{{\tilde{g}}}_{k}}-\bar{g}_{k}^{2}){{{\hat{A}}}_{k}}{{X}_{k, k}}{{{\hat{A}}}_{k}}^{{\rm T}}+{{W}_{k}}+{\rm E}\{\pmb{\textbf{r}}_{k+1}^{i}\pmb{\textbf{r}}{{_{k+1}^{i}}^{{\rm T}}}\}-\nonumber\\ {\rm E}\{\pmb{\textbf{r}}_{k+1}^{i}\tilde{\pmb{\textbf{x}}}{{_{r, k}^{i}}^{{\rm T}}}\}{{A}_{\bar{g}, k}}^{{\rm T}}-{\rm E}\{\Phi _{m, k+1}^{i}\}{\rm E}\{\pmb{\textbf{r}}_{k+1}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k}^{i}}^{{\rm T}}}\} \times \nonumber\\ {{A}_{\bar{g}, k}}^{{\rm T}}-{{A}_{\bar{g}, k}}{\rm E}\{\tilde{\pmb{\textbf{x}}}_{r, k}^{i}\pmb{\textbf{r}}{{_{k+1}^{i}}^{{\rm T}}}\}+{{A}_{\bar{g}, k}}{\rm E}\{\tilde{\pmb{\textbf{x}}}_{r, k}^{i}\tilde{\pmb{\textbf{x}}}{{_{r, k}^{i}}^{{\rm T}}}\} \times\nonumber\\ {{A}_{\bar{g}, k}}^{{\rm T}}+{{A}_{\bar{g}, k}}{\rm E}\{\Phi _{m, k+1}^{i}\}{\rm E}\{\tilde{\pmb{\textbf{x}}}_{r, k}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k}^{i}}^{{\rm T}}}\}{{A}_{\bar{g}, k}}^{{\rm T}}-\nonumber\\ {{A}_{\bar{g}, k}}{\rm E}\{\Phi _{m, k+1}^{i}\}{\rm E}\{\tilde{\pmb{\textbf{x}}}_{r, k}^{i}\pmb{\textbf{r}}{{_{k+1}^{i}}^{{\rm T}}}\}+{{A}_{\bar{g}, k}}{\rm E}\{\Phi _{m, k+1}^{i}\} \times \nonumber\\ {\rm E}\{\hat{\pmb{\textbf{x}}}_{r, k}^{i}\tilde{\pmb{\textbf{x}}}{{_{r, k}^{i}}^{{\rm T}}}\}{{A}_{\bar{g}, k}}^{{\rm T}}+{{A}_{\bar{g}, k}}{\rm E}\{\Phi _{m, k+1}^{i}\} \times \nonumber\\ {\rm E}\{\hat{\pmb{\textbf{x}}}_{r, k}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k}^{i}}^{{\rm T}}}\}{{A}_{\bar{g}, k}}^{{\rm T}} $
(49) 利用式(36)对式(48)和式(49)中各量进行变量代换, 即得到式(46).
设 $\hat{\pmb{\textbf{x}}}_{r, k}^{o}$ 为分布式融合估计值, 融合估计误差协方差为 $P_{r, k}^{o}={\rm E}\{({{\pmb{\textbf{x}}}_{k}}-\hat{\pmb{\textbf{x}}}_{r, k}^{o}){{({{\pmb{\textbf{x}}}_{k}}-\hat{\pmb{\textbf{x}}}_{r, k}^{o})}^{{\rm T}}}\}$ .
根据最优线性无偏估计方法, 基于所设计的局部滤波增益(10)及相应融合中心端的 $N$ 个局部重组状态估计 $\hat{\pmb{\textbf{x}}}_{r, k}^{i}$ , 由式(5)和式(6), 可得到分布式融合估计器的形式如下:
$ \hat{\pmb{\textbf{x}}}_{r, k}^{o}={{(I_{o}^{{\rm T}}P_{r, k}^{-1}{{I}_{o}})}^{-1}}{{I}_{o}^{{\rm T}}}P_{r, k}^{-1}{{\pmb{\textbf{z}}}_{r, k}} $
(50) $ P_{r, k}^{o}={{(I_{o}^{{\rm T}}P_{r, k}^{-1}{{I}_{o}})}^{-1}} $
(51) 其中, ${{\pmb{\textbf{z}}}_{r, k}}:=col_i(\hat{\pmb{\textbf{x}}}_{r, k}^{i})$ , , $P_{r, k}^{i, j}$ 和 $P_{r, k}^{i, i}$ 按照式(46)计算.
4. 算例仿真
考虑如下由2个传感器组成的线性时变离散随机系统:
$ {{\pmb{\textbf{x}}}_{k+1}}=({{A}_{k}}+{{g}_{k}}{{\hat{A}}_{k}}){{\pmb{\textbf{x}}}_{k}}+{{\pmb{\textbf{w}}}_{k}} $
$ \pmb{\textbf{y}}_{k}^{i}=f_{k}^{i}C_{k}^{i}{{\pmb{\textbf{x}}}_{k}}+\pmb{\textbf{v}}_{k}^{i}, ~i=1, 2 $
其中, , , , , ${{q}_{k}}$ 、 $\pmb{\textbf{v}}_{k}^{1}$ 和 $\pmb{\textbf{v}}_{k}^{2}$ 为互不相关的零均值白噪声, 其协方差分别为1、0.25和0.25.设最大时延为 $L=3$ , $p_{0, k}^{i}=0.4$ , $p_{1, k}^{i}=0.3$ , $p_{2, k}^{i}=0.2$ , $p_{3, k}^{i}=0.05$ $(i=1, 2)$ .乘性噪声 ${{g}_{k}}$ 在区间 $[-0.1, 0.1]$ 上服从均匀分布, 系统初值 ${{\pmb{\textbf{x}}}_{0}}$ 的两个分量由在区间[-1, 1]上服从均匀分布, 且, $\hat{\pmb{\textbf{x}}}_{r, k}^{o}=\hat{\pmb{\textbf{x}}}_{k}^{1}=\hat{\pmb{\textbf{x}}}_{k}^{2}={{\hat{\pmb{\textbf{x}}}}_{0}}$ , .传感器增益退化系数 $f_{k}^{1}$ 和 $f_{k}^{2}$ 均在区间 $[0.6, 0.8]$ 上服从均匀分布. , .根据式(46)和(50)求得分布式融合估计值 $\hat{\pmb{\textbf{x}}}_{r, k}^{o}$ .
分布式融合估计值 $\hat{\pmb{\textbf{x}}}_{r, k}^{o}$ 的仿真结果如图 2所示, 四条曲线分别表示真实状态 ${{\pmb{\textbf{x}}}_{k}}$ 、通道1的局部最优估计 $\hat{\pmb{\textbf{x}}}_{k}^{1}$ 、通道2的局部最优估计 $\hat{\pmb{\textbf{x}}}_{k}^{2}$ 和分布式融合估计 $\hat{\pmb{\textbf{x}}}_{r, k}^{o}$ .图 3表示各时刻随机时延依概率的取值情况, 其中, $m=0$ 、 $m=1$ 、 $m=2$ 和 $m=3$ 依次表示时延为0、1、2、3, $m=4$ 表示数据丢包.图 4表示, 当传感器增益退化系数 $f_{k}^{i}$ 分别在区间 $Df=[0.6, 0.8]$ 、 $Df=[0.3, 0.5]$ 和 $Df=[0.1, 0.3]$ 上服从均匀分布时, 分布式融合估计误差协方差矩阵 $P_{r, k}^{o}$ 的迹 $\text{tr}(P_{r, k}^{o})$ 的计算结果, 由图 4可知, 在达到平稳时, $\text{tr}(P_{r, k}^{o})$ 随着增益退化系数 $f_{k}^{i}$ 取值的减小而增大, 这说明传感器增益退化越严重, 分布式融合估计误差越大.图 5表示, 当乘性噪声 ${{g}_{k}}$ 分别在 $Dg=[-0.1, 0.1]$ 、 $Dg=[-0.3, 0.3]$ 和 $Dg=[-0.5, 0.5]$ 上服从均匀分布时, $\text{tr}(P_{r, k}^{o})$ 的计算结果, 由图 5可知, 随着 ${{g}_{k}}$ 绝对值的增大, $\text{tr}(P_{r, k}^{o})$ 趋于稳定所用的时间越久, 在达到平稳时, $\text{tr}(P_{r, k}^{o})$ 则随着 ${{g}_{k}}$ 绝对值的增大而增大, 这说明模型不确定性越大, 分布式融合估计误差越大.
为比较本文所提出的分布式融合估计方法与文献[13]所提出的集中式融合方法下的估计性能, 设传感器增益退化系数 $f_{k}^{i}$ 在区间 $Df=[0.6, 0.8]$ 上服从均匀分布, 乘性噪声 ${{g}_{k}}$ 在区间 $Dg=[-0.1, 0.1]$ 上服从均匀分布, 分别计算出两种融合估计方法下的融合估计误差协方差矩阵的迹, 其仿真结果如图 6所示.由图 6可看出, 文献[13]中所提出的集中式融合估计方法的融合估计误差小于本文所提的分布式融合方法, 这是因为前者采用集中式框架, 在融合中心直接利用所有传感器的原始测量数据进行融合估计, 测量数据信息损失量最小, 后者首先利用各传感器测量数据进行局部最优估计, 然后再将局部最优估计发送到融合中心, 测量数据信息损失量大于集中式融合方法, 从而增大融合估计误差; 从图 5又可以看出, 两种方法的融合估计误差相差不大, 说明本文提出分布式融合结构相比于集中式融合估计, 虽然融合精度并不是最优, 但融合精度损失不大, 同时, 采用分布式计算方法, 能够避免高维矩阵计算, 降低了计算量.
5. 结论
本文考虑了具有传感器增益退化、模型不确定性、数据传输时延和丢包的多传感器分布式融合估计问题, 对模型的不确定性、传感器增益退化现象、随机时延和丢包现象依次进行建模.针对传感器增益退化和模型的不确定性, 设计了一种局部最优无偏估计器, 并在融合中心端建立符合存储规则的时延-丢包模型, 利用最优线性无偏估计方法, 推导出最小方差意义下的分布式融合估计器的递推形式.最后仿真结果表明, 传感器增益退化程度和模型不确定性越大, 系统融合估计精度越差.因此, 可通过改善传感器抗退化性能和减小模型不确定性, 来提高系统融合估计精度.相比于集中式融合估计, 本文所提方法能够有效降低计算量, 提高了系统容错能力和抗干扰性, 且工程上易于实现.
附录A 引理1的证明过程
证明.首先依次对第3节中式(27)~(31)进行推导, 即分5种情况进行讨论:
1) 当 $m=n$ 时, 有
$ {\rm E}\{\hat{\pmb{\textbf{x}}}_{m}^{i}\hat{\pmb{\textbf{x}}}{{_{n}^{j}}^{{\rm T}}}\}=\Gamma _{m, m}^{i, j} $
(A1) 2) 当 $m-n=1$ 时, 有
$ {\rm E}\{\hat{\pmb{\textbf{x}}}_{m}^{i}\hat{\pmb{\textbf{x}}}{{_{n}^{j}}^{{\rm T}}}\}=\nonumber\\ {\rm E}\{(L_{m-1}^{i}\pmb{\textbf{y}}_{m-1}^{i}+A_{\bar{g}, \bar{f}, m-1}^{i}\hat{\pmb{\textbf{x}}}_{m-1}^{i})\hat{\pmb{\textbf{x}}}{{_{m-1}^{j}}^{{\rm T}}}\}=\nonumber\\ L_{m-1}^{i}{\rm E}\{\pmb{\textbf{y}}_{m-1}^{i}\hat{\pmb{\textbf{x}}}{{_{m-1}^{j}}^{{\rm T}}}\}+A_{\bar{g}, \bar{f}, m-1}^{i}{\rm E}\{\hat{\pmb{\textbf{x}}}_{m-1}^{i}\hat{\pmb{\textbf{x}}}{{_{m-1}^{j}}^{{\rm T}}}\}=\nonumber\\ A_{\bar{g}, \bar{f}, m-1}^{i}\Gamma _{m-1, m-1}^{i, j}+\bar{f}_{m-1}^{i}L_{m-1}^{i}C_{m-1}^{i}\Lambda _{m-1, m-1}^{j} $
(A2) 3) 当 $m-n\ge 2$ 时, 令
$ \left\{ {\begin{array}{l} a_{m-1}^{i}:=L_{m-1}^{i} \\ b_{m-1}^{i}:=A_{\bar{g}, \bar{f}, m-1}^{i} \\ \end{array}} \right. $
(A3) 结合式(3)、(A3)得
$ \hat{\pmb{\textbf{x}}}_{m}^{i}=a_{m-1}^{i}\pmb{\textbf{y}}_{m-1}^{i}+b_{m-1}^{i}\hat{\pmb{\textbf{x}}}_{m-1}^{i}=\nonumber\\ a_{m-1}^{i}\pmb{\textbf{y}}_{m-1}^{i}+b_{m-1}^{i}(a_{m-2}^{i}\pmb{\textbf{y}}_{m-2}^{i}+b_{m-2}^{i}\hat{\pmb{\textbf{x}}}_{m-2}^{i})=\nonumber\\ a_{m-1}^{i}\pmb{\textbf{y}}_{m-1}^{i}+b_{m-1}^{i}a_{m-2}^{i}\pmb{\textbf{y}}_{m-2}^{i}+b_{m-1}^{i}b_{m-2}^{i}\times \nonumber\\ (a_{m-3}^{i}\pmb{\textbf{y}}_{m-2}^{i}+b_{m-3}^{i}\hat{\pmb{\textbf{x}}}_{m-3}^{i})=\nonumber\\ \begin{matrix} {} \begin{matrix} {} \begin{matrix} {} \vdots {} \end{matrix} {} \end{matrix} {} \end{matrix} \nonumber\\ a_{m-1}^{i}\pmb{\textbf{y}}_{m-1}^{i}+\sum\limits_{c=2}^{m-n}{[(\prod\limits_{d=1}^{c-1}{b_{m-d}^{i})a_{m-c}^{i}\pmb{\textbf{y}}_{m-c}^{i}}]}+\nonumber\\ (\prod\limits_{f=1}^{m-n}{b_{m-f}^{i})\hat{\pmb{\textbf{x}}}_{n}^{i}} $
(A4) 此时, 由式(A4)可得
$ {\rm E}\{\hat{\pmb{\textbf{x}}}_{m}^{i}\hat{\pmb{\textbf{x}}}{{_{n}^{j}}^{{\rm T}}}\}=\nonumber\\ {\rm E}\{(a_{m-1}^{i}\pmb{\textbf{y}}_{m-1}^{i}+\sum\limits_{c=2}^{m-n}{[(\prod\limits_{d=1}^{c-1}{b_{m-d}^{i})a_{m-c}^{i}\pmb{\textbf{y}}_{m-c}^{i}}]} +\nonumber\\ (\prod\limits_{f=1}^{m-n}{b_{m-f}^{i})\hat{\pmb{\textbf{x}}}_{n}^{i}})\hat{\pmb{\textbf{x}}}{{_{n}^{j}}^{{\rm T}}}\}=\nonumber\\ a_{m-1}^{i}{\rm E}\{\pmb{\textbf{y}}_{m-1}^{i}\hat{\pmb{\textbf{x}}}{{_{n}^{j}}^{{\rm T}}}\}+{\rm E}\{(\prod\limits_{f=1}^{m-n}{b_{m-f}^{i})\hat{\pmb{\textbf{x}}}_{n}^{i}}\hat{\pmb{\textbf{x}}}{{_{n}^{j}}^{{\rm T}}}\} +\nonumber\\ {\rm E}\{\sum\limits_{c=2}^{m-n}{[(\prod\limits_{d=1}^{c-1}{b_{m-d}^{i})a_{m-c}^{i}\pmb{\textbf{y}}_{m-c}^{i}\hat{\pmb{\textbf{x}}}{{_{n}^{j}}^{{\rm T}}}}]}\}=\nonumber\\ a_{m-1}^{i}\bar{f}_{m-1}^{i}C_{m-1}^{i}(\prod\limits_{e=1}^{m-n-1}{{{A}_{\bar{g}, m-1-e}}})\Lambda _{n, n}^{j} +\nonumber\\ \sum\limits_{c=2}^{m-n}{[\bar{f}_{m-c}^{i}(\prod\limits_{d=1}^{c-1}{b_{m-d}^{i})}a_{m-c}^{i}C_{m-c}^{i}} \times \nonumber\\ (\prod\limits_{h=1}^{m-n-c}{{{A}_{\bar{g}, m-c-h}})\Lambda _{n, n}^{j}]}+(\prod\limits_{f=1}^{m-n}{b_{m-f}^{i}})\Gamma _{n, n}^{i, j} $
(A5) 4) 当 $n-m=1$ 时, 与式(28)推导过程同理, 可得
$ {\rm E}\{\hat{\pmb{\textbf{x}}}_{m}^{i}\hat{\pmb{\textbf{x}}}{{_{n}^{j}}^{{\rm T}}}\}=\bar{f}_{n-1}^{j}\Lambda {{_{n-1, n-1}^{i}}^{{\rm T}}}L{{_{n-1}^{j}}^{{\rm T}}}C{{_{n-1}^{j}}^{{\rm T}}} +\nonumber\\ \Gamma _{n-1, n-1}^{i, j}A{{_{\bar{g}, \bar{f}, n-1}^{j}}^{{\rm T}}} $
(A6) 5) 当 $n-m\ge 2$ 时, 与式(29)推导过程同理, 可得
$ {\rm E}\{\hat{\pmb{\textbf{x}}}_{m}^{i}\hat{\pmb{\textbf{x}}}{{_{n}^{j}}^{{\rm T}}}\}=\nonumber\\ \bar{f}_{n-1}^{j}\Lambda {{_{m, m}^{i}}^{{\rm T}}}{(\prod\limits_{e=1}^{n-m-1}{{{A}_{\bar{g}, n-1-e}}})^{{\rm T}}}C{{_{n-1}^{j}}^{{\rm T}}}a{{_{n-1}^{j}}^{{\rm T}}} +\nonumber\\ \sum\limits_{c=2}^{n-m}[\bar{f}_{n-c}^{j}\Lambda {{_{m, m}^{i}}^{{\rm T}}}(\prod\limits_{h=1}^{n-m-c}{{{A}_{\bar{g}, n-c-h}}})^{{\rm T}}C{{_{n-c}^{j}}^{{\rm T}}}a{{_{n-c}^{j}}^{{\rm T}}} \times \nonumber\\ {(\prod\limits_{d=1}^{c-1}{b_{n-d}^{j}})^{{\rm T}}}]+\Gamma _{m, m}^{i, j}(\prod\limits_{f=1}^{n-m}{b_{n-f}^{j}{{)}^{{\rm T}}}} $
(A7) 利用式(A3)对式(A5)和式(A7)进行变量代换, 并综合上述5种情况下讨论结果, 得到式(27)~(31).
下面对正文中式(32)~(35)进行推导, 即分4种情况进行讨论:
1) 当 $m=n$ 时, 有
$ {\rm E}\{\pmb{\textbf{x}}_{m}^{{}}\hat{\pmb{\textbf{x}}}{{_{n}^{i}}^{{\rm T}}}\}=\Lambda _{m, m}^{i} $
(A8) 2) 当 $m-n\ge 1$ 时, 有
$ {\rm E}\{{{\pmb{\textbf{x}}}_{m}}\hat{\pmb{\textbf{x}}}{{_{n}^{i}}^{{\rm T}}}\}=(\prod\limits_{\tau=1}^{m-n}{{{A}_{\bar{g}, m-1}}}){\rm E}\{{{\pmb{\textbf{x}}}_{n}}\hat{\pmb{\textbf{x}}}{{_{n}^{i}}^{{\rm T}}}\}=\nonumber\\ (\prod\limits_{\tau=1}^{m-n}{{{A}_{\bar{g}, m-1}}})\Lambda _{n, n}^{i} $
(A9) 3) 当 $n-m=1$ 时, 有
$ {\rm E}\{{{\pmb{\textbf{x}}}_{m}}\hat{\pmb{\textbf{x}}}{{_{n}^{i}}^{{\rm T}}}\}=\nonumber\\ {\rm E}\{{{\pmb{\textbf{x}}}_{n-1}}\pmb{\textbf{y}}{{_{n-1}^{i}}^{{\rm T}}}\}L{{_{n-1}^{i}}^{{\rm T}}}+{\rm E}\{{{\pmb{\textbf{x}}}_{n-1}}\pmb{\textbf{x}}{{_{n-1}^{i}}^{{\rm T}}}\}A{{_{\bar{g}, \bar{f}, n-1}^{i}}^{{\rm T}}}=\nonumber\\ H_{n-1, n-1}^{i}L{{_{n-1}^{i}}^{{\rm T}}}+\Lambda _{n-1, n-1}^{i}A{{_{\bar{g}, \bar{f}, n-1}^{i}}^{{\rm T}}} $
(A10) 4) 当 $n-m\ge 2$ 时, 令
$ \left\{ \begin{array}{*{35}{l}} a_{n-f}^{i}:=L_{n-f}^{i}\text{ } \\ b_{n-f}^{i}:=A_{\bar{g}, \bar{f}, n-f}^{i} \\ \end{array} \right. $
(A11) 则由式(A4)推导过程可得
$ {\rm E}\{{{\pmb{\textbf{x}}}_{m}}\hat{\pmb{\textbf{x}}}{{_{n}^{j}}^{{\rm T}}}\}=\nonumber\\ \bar{f}_{n-1}^{i}{{X}_{m, m}}(\prod\limits_{e=1}^{n-m-1}{{{A}_{\bar{g}, n-1-e}}})^{\rm T}C{{_{n-1}^{i}}^{{\rm T}}}a{{_{n-1}^{i}}^{{\rm T}}} +\nonumber\\ \sum\limits_{c=2}^{n-m}{[\bar{f}_{n-c}^{i}{{X}_{m, m}}(\prod\limits_{h=1}^{n-m-c}{{{A}_{\bar{g}, n-c-h}}{{)}}^{{\rm T}}C{{_{n-c}^{i}}^{{\rm T}}}a{{_{n-c}^{i}}^{{\rm T}}}}} \times \nonumber\\ (\prod\limits_{d=1}^{c-1}{b_{n-d}^{i}})^{\rm T}]+\Lambda _{m, m}^{i}(\prod\limits_{f=1}^{n-m}{b_{n-f}^{i}{{)}^{{\rm T}}}} $
(A12) 利用式(A11)对式(A12)进行变量代换, 并综上4种情况所述, 得到式(32)~(35).
附录B 引理2的证明过程
证明.下面分别对第3节中式(37)~(45)依次进行推导.由式(36)中各变量定义可得到
$ R_{k+1, k+1}^{i, j}=\nonumber\\ {\rm E}\{\sum\limits_{m=0}^{L}{[\delta (\tau _{k+1}^{i}, m)(\prod\limits_{\tau=1}^{m}{{{A}_{\bar{g}, k+1-\tau }}}}) \times \nonumber\\ \hat{\pmb{\textbf{x}}}_{k+1-m}^{i}]\sum\limits_{n=0}^{L}{[\delta (\tau _{k+1}^{j}, n)(}\prod\limits_{s=1}^{n}{{{A}_{\bar{g}, k+1-s}}})\hat{\pmb{\textbf{x}}}_{k+1-n}^{j}{{]}^{{\rm T}}}\}=\nonumber\\[-10mm] \left\{ {\begin{array}{l} {\rm E}\{\sum\limits_{m=0}^{L}{\sum\limits_{n=0}^{L}{[\delta (\tau _{k+1}^{i}, m)\delta (\tau _{k+1}^{j}, n)(\prod\limits_{\tau=1}^{m}{{{A}_{\bar{g}, k+1-\tau }})}}} \times\nonumber\\ \hat{\pmb{\textbf{x}}}_{k+1-m}^{i}\hat{\pmb{\textbf{x}}}{{_{k+1-n}^{j}}^{{\rm T}}}(\prod\limits_{s=1}^{n}{{{A}_{\bar{g}, k+1-s}}})^{\rm T}]\}, ~~~~~~~~~~~~~~i\ne j \nonumber\\[4mm] {\rm E}\{\sum\limits_{m=0}^{L}{[\delta (\tau _{k+1}^{i}, m)(\prod\limits_{\tau=1}^{m}{{{A}_{\bar{g}, k+1-\tau }})\hat{\pmb{\textbf{x}}}_{k+1-m}^{i}}} \times\nonumber\\ \hat{\pmb{\textbf{x}}}{{_{k+1-m}^{i}}^{{\rm T}}}(\prod\limits_{\tau=1}^{m}{{{A}_{\bar{g}, k+1-\tau }}{{)}^{{\rm T}}}}]\}, ~~~~~~~~~~~~~~~~~~~~~~~~~i=j \end{array}} \right. $
(B1) $ \hat{R}_{\pmb{\textbf{x}}, k+1, k}^{i, j}=\nonumber\\ {\rm E}\{\sum\limits_{m=0}^{L}{[\delta (\tau _{k+1}^{i}, m)(\prod\limits_{\tau=1}^{m}{{{A}_{\bar{g}, k+1-\tau }}})\hat{\pmb{\textbf{x}}}_{k+1-m}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k}^{j}}^{{\rm T}}}]}\}=\nonumber\\ \sum\limits_{m=0}^{L}{[p_{m, k+1}^{j}}(\prod\limits_{\tau=1}^{m}{{{A}_{\bar{g}, k+1-\tau }}){\rm E}\{\hat{\pmb{\textbf{x}}}_{k+1-m}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k}^{j}}^{{\rm T}}}\}]}% \nonumber\\ $
(B2) $ R_{x, k+1, k}^{i}=\nonumber\\ {\rm E}\{\sum\limits_{m=0}^{L}{[\delta (\tau _{k+1}^{i}, m)(\prod\limits_{\tau=1}^{m}{{{A}_{\bar{g}, k+1-\tau }}})\hat{\pmb{\textbf{x}}}_{k+1-m}^{i}{{\pmb{\textbf{x}}}_{k}}^{{\rm T}}]}\}=\nonumber\\ \sum\limits_{m=0}^{L}{[p_{m, k+1}^{j}}(\prod\limits_{\tau=1}^{m}{{{A}_{\bar{g}, k+1-\tau }}){\rm E}\{\hat{\pmb{\textbf{x}}}_{k+1-m}^{i}{{\pmb{\textbf{x}}}_{k}}^{{\rm T}}\}}] $
(B3) $ X_{r, k, k}^{i, j}={\rm E}\{(\pmb{\textbf{r}}_{k}^{i}+\bar{\Phi }_{m, k}^{i}{{A}_{\bar{g}, k-1}}\hat{\pmb{\textbf{x}}}_{r, k-1}^{i})(\pmb{\textbf{r}}_{k}^{j}+\bar{\Phi }_{n, k}^{j}{{A}_{\bar{g}, k-1}} \times\nonumber\\\hat{\pmb{\textbf{x}}}_{r, k-1}^{j}{{)}^{{\rm T}}}\}=\nonumber \\ \left\{ {\begin{array}{l} {\rm E}\{\pmb{\textbf{r}}_{k}^{i}\pmb{\textbf{r}}{{_{k}^{j}}^{{\rm T}}}\}+\bar{p}_{L, m, k}^{i}{{A}_{\bar{g}, k-1}}{\rm E}\{\hat{\pmb{\textbf{x}}}_{r, k-1}^{i}\pmb{\textbf{r}}{{_{k}^{j}}^{{\rm T}}}\} +\nonumber\\ \bar{p}_{L, n, k}^{j}{\rm E}\{\pmb{\textbf{r}}_{k}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k-1}^{j}}^{{\rm T}}}\}{{A}_{\bar{g}, k-1}}^{{\rm T}}+\bar{p}_{L, m, k}^{i}\times\nonumber\\ \bar{p}_{L, n, k}^{j}{{A}_{\bar{g}, k-1}}{\rm E}\{\hat{\pmb{\textbf{x}}}_{r, k-1}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k-1}^{j}}^{{\rm T}}}\}{{A}_{\bar{g}, k-1}}^{\rm T}, ~~~~~~~~~~~~~i\ne j \nonumber\\[4mm] {\rm E}\{\pmb{\textbf{r}}_{k}^{i}\pmb{\textbf{r}}{{_{k}^{i}}^{{\rm T}}}\}+\bar{p}_{L, m, k}^{i}{{A}_{\bar{g}, k-1}}{\rm E}\{\hat{\pmb{\textbf{x}}}_{r, k-1}^{i}\pmb{\textbf{r}}{{_{k}^{i}}^{{\rm T}}}\} +\nonumber\\ \bar{p}_{L, m, k}^{i}{\rm E}\{\pmb{\textbf{r}}_{k}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k-1}^{i}}^{{\rm T}}}\}{{A}_{\bar{g}, k-1}}^{{\rm T}}+\bar{p}_{L, m, k}^{i} \times\nonumber\\ {{A}_{\bar{g}, k-1}}{\rm E}\{\hat{\pmb{\textbf{x}}}_{r, k-1}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k-1}^{i}}^{{\rm T}}}\}{{A}_{\bar{g}, k-1}}^{{\rm T}}, ~~~~~~~~~~~~~~~~~~~~~~~i=j \end{array}} \right. $
(B4) $ \hat{X}_{r, k, k}^{i}={\rm E}\{({{A}_{\bar{g}, k-1}}{{\pmb{\textbf{x}}}_{k-1}}+{{\pmb{\textbf{w}}}_{k-1}})(\pmb{\textbf{r}}_{k}^{i}+\bar{\Phi }_{m, k}^{i}{{A}_{\bar{g}, k-1}} \times \nonumber\\ \hat{\pmb{\textbf{x}}}_{r, k-1}^{i}{{)}^{{\rm T}}}\}=\nonumber\\ {{A}_{\bar{g}, k-1}}{\rm E}\{{{\pmb{\textbf{x}}}_{k-1}}\pmb{\textbf{r}}{{_{k}^{i}}^{{\rm T}}}\}+\bar{p}_{L, m, k}^{i}{{A}_{\bar{g}, k-1}} \times \nonumber\\ {\rm E}\{{{\pmb{\textbf{x}}}_{k-1}}\hat{\pmb{\textbf{x}}}{{_{r, k-1}^{i}}^{{\rm T}}}\}{{A}_{\bar{g}, k-1}}^{{\rm T}} $
(B5) 对于式(42)中 $\hat{X}_{r, k+1-m, k}^{i, j}$ , 分3种情况讨论:
1) 当 $m=0$ 时, 有
$ \hat{X}_{r, k+1-m, k}^{i, j}=\hat{X}_{r, k+1, k}^{i, j}=\nonumber\\ {\rm E}\{\hat{\pmb{\textbf{x}}}_{k+1}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k}^{j}}^{{\rm T}}}\}=\nonumber\\ {\rm E}\{(L_{k}^{i}\pmb{\textbf{y}}_{k}^{i}+A_{\bar{g}, \bar{f}, k}^{i}\hat{\pmb{\textbf{x}}}_{k}^{i})\hat{\pmb{\textbf{x}}}{{_{r, k}^{j}}^{{\rm T}}}\}=\nonumber\\ L_{k}^{i}{\rm E}\{\pmb{\textbf{y}}_{k}^{i}\pmb{\textbf{x}}{{_{r, k}^{j}}^{{\rm T}}}\}+A_{\bar{g}, \bar{f}, k}^{i}{\rm E}\{\hat{\pmb{\textbf{x}}}_{k}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k}^{j}}^{{\rm T}}}\} $
(B6) 2) 当 $m=1$ 时, 有
$ \hat{X}_{r, k+1-m, k}^{i, j}=\hat{X}_{r, k, k}^{i, j}=\nonumber\\ {\rm E}\{\hat{\pmb{\textbf{x}}}_{k}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k}^{j}}^{{\rm T}}}\}=\nonumber\\ {\rm E}\{(L_{k-1}^{i}\pmb{\textbf{y}}_{k-1}^{i}+A_{\bar{g}, \bar{f}, k-1}^{i}\hat{\pmb{\textbf{x}}}_{k-1}^{i})\times \nonumber\\ {{(\pmb{\textbf{r}}_{k}^{j}+\bar{\Phi }_{n, k}^{j}{{A}_{\bar{g}, k-1}}\hat{\pmb{\textbf{x}}}_{r, k-1}^{j})}^{{\rm T}}}\}=\nonumber\\ L_{k-1}^{i}{\rm E}\{\pmb{\textbf{y}}_{k-1}^{i}\pmb{\textbf{r}}{{_{k}^{j}}^{{\rm T}}}\}+A_{\bar{g}, \bar{f}, k-1}^{i}{\rm E}\{\hat{\pmb{\textbf{x}}}_{k-1}^{i}\pmb{\textbf{r}}{{_{k}^{j}}^{{\rm T}}}\}+ \nonumber\\ \bar{p}_{L, n, k}^{j}L_{k-1}^{i}{\rm E}\{\pmb{\textbf{y}}_{k-1}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k-1}^{j}}^{{\rm T}}}\}{{A}_{\bar{g}, k-1}}^{{\rm T}}+ \nonumber\\ \bar{p}_{L, n, k}^{j}A_{\bar{g}, \bar{f}, k-1}^{i}{\rm E}\{\hat{\pmb{\textbf{x}}}_{k-1}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k-1}^{j}}^{{\rm T}}}\}{{A}_{\bar{g}, k-1}}^{{\rm T}} $
(B7) 3) 当 $m>1$ 时, 由式(8)得
$ \hat{\pmb{\textbf{x}}}_{r, k}^{j}=\pmb{\textbf{r}}_{k}^{j}+\bar{\Phi }_{n, k}^{j}{{A}_{\bar{g}, k-1}}\hat{\pmb{\textbf{x}}}_{r, k-1}^{j}=\nonumber\\ {\textbf{r}}_{k}^{j}+\bar{\Phi }_{n, k}^{j}{{A}_{\bar{g}, k-1}}(\pmb{\textbf{r}}_{k-1}^{j} +\nonumber\\ \bar{\Phi }_{n, k-1}^{j}{{A}_{\bar{g}, k-2}}\hat{\pmb{\textbf{x}}}_{r, k-2}^{j})=\nonumber\\ \begin{matrix} {} \begin{matrix} {} {} {} \begin{matrix} \vdots {} {} {} \end{matrix} \end{matrix} {} \end{matrix} \nonumber\\ {\textbf{r}}_{k}^{j}+\sum\limits_{\tau=1}^{m-1}{[(\prod\limits_{s=1}^{\tau }{\bar{\Phi }_{n, k+1-s}^{j}{{A}_{\bar{g}, k-s}}})\pmb{\textbf{r}}_{k-\tau }^{j}]}+\nonumber\\ (\prod\limits_{t=1}^{m-1}{\bar{\Phi }_{n, k+1-t}^{j}{{A}_{\bar{g}, k-t}})}\hat{\pmb{\textbf{x}}}_{r, k+1-m}^{j} $
(B8) 则有
$ \hat{X}_{r, k+1-m, k}^{i, j}=\nonumber\\ {\rm E}\{\hat{\pmb{\textbf{x}}}_{k+1-m}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k}^{j}}^{{\rm T}}}\}=\nonumber\\ \sum\limits_{\tau=1}^{m-1}{[{\rm E}\{\hat{\pmb{\textbf{x}}}_{k+1-m}^{i}\pmb{\textbf{r}}{{_{k-\tau }^{j}}^{{\rm T}}}\}{\rm E}\{(\prod\limits_{s=1}^{\tau }{\bar{\Phi }_{n, k+1-s}^{j}{{A}_{\bar{g}, k-s}}{{)}^{{\rm T}}}}\}} +\nonumber\\ {\rm E}\{\hat{\pmb{\textbf{x}}}_{k+1-m}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k+1-m}^{j}}^{{\rm T}}}\}{\rm E}\{(\prod\limits_{t=1}^{m-1}{\bar{\Phi }_{n, k+1-t}^{j}{{A}_{\bar{g}, k-t}}{{)}^{{\rm T}}}}\} +\nonumber\\ {\rm E}\{\hat{\pmb{\textbf{x}}}_{k+1-m}^{i}\pmb{\textbf{r}}{{_{k}^{j}}^{{\rm T}}}\} $
(B9) $ Y_{r, k, k}^{i, j}=\bar{f}_{k}^{i}C_{k}^{i}{\rm E}\{{{\pmb{\textbf{x}}}_{k}}\hat{\pmb{\textbf{x}}}{{_{r, k}^{j}}^{{\rm T}}}\} $
(B10) $ R_{y, k, k+1}^{i, j}=\bar{f}_{k}^{i}C_{k}^{i}{\rm E}\{{{\pmb{\textbf{x}}}_{k}}\pmb{\textbf{r}}{{_{k+1}^{j}}^{{\rm T}}}\} $
(B11) $ \bar{X}_{r, m, n}^{i, j}={\rm E}\{\hat{\pmb{\textbf{x}}}_{m}^{i}{\{\sum\limits_{s=0}^{L}{[\delta (\tau _{n}^{j}, s)(\prod\limits_{\tau=1}^{s}{{{A}_{\bar{g}, n-\tau }}})\hat{\pmb{\textbf{x}}}_{n-s}^{j}]}\}^{{\rm T}}}\}=\nonumber\\ \sum\limits_{s=0}^{L}{[p_{s, n}^{i}{\rm E}\{\hat{\pmb{\textbf{x}}}_{m}^{i}\hat{\pmb{\textbf{x}}}{{_{n-s}^{j}}^{\rm T}}\}(\prod\limits_{\tau=1}^{s}{{{A}_{\bar{g}, n-\tau }}}}{{)}^{{\rm T}}}] $
(B12) 利用式(36)对式(B1)~(B7)、式(B9)~(B12)中各量进行变量代换, 即分别得到式(37)~(45).
-
表 1 不同被试采用两种特征在两类时段可获得的平均识别率和最高识别率
Table 1 The average and maximal classification accuracy obtained by different features F1 and F1 + F2
被试 特征组合 识别率上升时段 最优时段平均 最优时段最高 平均识别率(%) 识别率(%) 识别率(%) S1 F1 68.39 83.85 88.09 F1+F2 73.38 84.23 88.56 S2 F1 69.60 78.15 79.44 F1+F2 71.14 78.26 79.60 S3 F1 80.04 86.53 87.77 F1+F2 81.16 86.29 87.65 S4 F1 64.82 75.33 77.25 F1+F2 65.41 75.13 77.22 S5 F1 65.60 78.31 81.29 F1+F2 67.70 80.52 82.93 S6 F1 72.37 92.01 94.38 F1+F2 78.50 93.09 94.72 S7 F1 68.37 80.28 81.97 F1+F2 70.56 79.92 81.28 S8 F1 64.62 77.52 79.23 F1+F2 67.67 77.26 79.14 S9 F1 61.74 71.07 72.59 F1+F2 64.15 70.77 72.59 表 2 加窗ApEn和时间均值ApEn特征对于不同被试取得的识别率对比
Table 2 The comparasion of window-added ApEn feature and normal ApEn feature on accuracy for each subjects
被试 加窗ApEn (%) 时间均值的ApEn (%) S1 76.14±0.99 64.54±1.38 S2 74.14±0.40 72.86±0.61 S3 84.97±0.86 81.93±0.84 S4 60.02±0.80 59.03±0.42 S5 72.38±1.80 71.17±1.17 S6 84.58±0.28 82.58±0.46 S7 75.80±0.57 80.99±0.40 S8 75.00±0.57 73.88±0.39 S9 67.04±0.47 68.13±0.47 表 3 对于不同被试者可得到的最大识别率(%)
Table 3 The maximal classification accuracy (%) obtained on different subjects
表 4 本文方法与BCI竞赛获奖者所取得的最大互信息对比
Table 4 Comparison of maximal mutual information (MI) between our work and BCI competition winners'methods
特征提取方法 最大互信息(MI) Schäfer and Lemm Morlet小波特征 0.61 Narayanad AR功率谱 0.46 Saffari AAR参数模型 0.45 Gao 频段能量特征 0.44 Sadashivaiah 六阶AR参数模型 0.29 本文方法 0.64 表 5 本文中所用方法的时耗统计
Table 5 The time consumption of the method used in this paper
EEMD过程 瞬时能量特征 边际谱特征 近似熵特征 时耗(s) 1.147 0.001 0.082 2.354 -
[1] Wolpaw J R, Birbaumer N, Mcfarland D J, Pfurtscheller G, Vaughan T M. Brain-computer interfaces for communication and control. Clinical Neurophysiology, 2002, 113(6): 767-791 doi: 10.1016/S1388-2457(02)00057-3 [2] Birbaumer N. Breaking the silence: Brain-computer interfaces (BCI) for communication and motor control. Psychophysiology, 2006, 43(6): 517-532 doi: 10.1111/psyp.2006.43.issue-6 [3] 高上凯.浅谈脑--机接口的发展现状与挑战.中国生物医学工程学报, 2007, 26(6): 801-803, 809 http://www.cnki.com.cn/Article/CJFDTOTAL-ZSWY200706002.htmGao Shang-Kai. Comments on recent progress and challenges in the study of brain-computer interface. Chinese Journal of Biomedical Engineering, 2007, 26(6): 801-803, 809 http://www.cnki.com.cn/Article/CJFDTOTAL-ZSWY200706002.htm [4] 王行愚, 金晶, 张宇, 王蓓.脑控:基于脑--机接口的人机融合控制.自动化学报, 2013, 39(3): 208-221 http://www.aas.net.cn/CN/abstract/abstract17800.shtmlWang Xing-Yu, Jin Jing, Zhang Yu, Wang Bei. Brain control: Human-computer integration control based on brain-computer interface. Acta Automatica Sinica, 2013, 39(3): 208-221 http://www.aas.net.cn/CN/abstract/abstract17800.shtml [5] Blankertz B, Sannelli C, Halder S, Hammer E M, Kübler A, Müller K R, Curio G, Dickhaus T. Neurophysiological predictor of SMR-based BCI performance. Neuroimage, 2010, 51(4): 1303-1309 doi: 10.1016/j.neuroimage.2010.03.022 [6] Pfurtscheller G, Neuper C. Motor imagery and direct brain-computer communication. Proceedings of the IEEE, 2001, 89(7): 1123-1134 doi: 10.1109/5.939829 [7] Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, Perelmouter J, Taub E, Flor H. A spelling device for the paralysed. Nature, 1999, 398(6725): 297-298 doi: 10.1038/18581 [8] Bayliss J D. Use of the evoked potential P3 component for control in a virtual apartment. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2003, 11(2): 113-116 doi: 10.1109/TNSRE.2003.814438 [9] Hoffmann U, Vesin J M, Ebrahimi T, Diserens K. An efficient P300-based brain-computer interface for disabled subjects. Journal of Neuroscience Methods, 2008, 167(1): 115-125 doi: 10.1016/j.jneumeth.2007.03.005 [10] Lalor E C, Kelly S P, Finucane C, Burke R, Smith R, Reilly R B, McDarby G. Steady-state VEP-based brain-computer interface control in an immersive 3D gaming environment. EURASIP Journal on Applied Signal Processing, 2005, 2005: 3156-3164 doi: 10.1155/ASP.2005.3156 [11] Middendorf M, McMillan G, Calhoun G, Jones K S. Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2): 211-214 doi: 10.1109/86.847819 [12] Hwang H J, Kwon K, Im C H. Neurofeedback-based motor imagery training for brain-computer interface (BCI). Journal of Neuroscience Methods, 2009, 179(1): 150-156 doi: 10.1016/j.jneumeth.2009.01.015 [13] Tam W K, Tong K Y, Meng F, Gao S. A minimal set of electrodes for motor imagery BCI to control an assistive device in chronic stroke subjects: A multi-session study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19(6): 617-627 doi: 10.1109/TNSRE.2011.2168542 [14] Pfurtscheller G. Functional brain imaging based on ERD/ERS. Vision Research, 2001, 41(10-11): 1257-1260 doi: 10.1016/S0042-6989(00)00235-2 [15] McFarland D J, Miner L A, Vaughan T M, Wolpaw J R. Mu and Beta Rhythm topographies during motor imagery and actual movements. Brain Topography, 2000, 12(3): 177-86 doi: 10.1023/A:1023437823106 [16] Chen M Y, Fang Y H, Zheng X F. Phase space reconstruction for improving the classification of single trial EEG. Biomedical Signal Processing and Control, 2014, 11: 10-16 doi: 10.1016/j.bspc.2014.02.002 [17] Rodríguez-Bermúdez G, Garcí a-Laencina P J, Roca-González J, Roca-Dorda J. Efficient feature selection and linear discrimination of EEG signals. Neurocomputing, 2013, 115: 161-165 doi: 10.1016/j.neucom.2013.01.001 [18] 孙会文, 伏云发, 熊馨, 杨俊, 刘传伟, 余正涛.基于HHT运动想象脑电模式识别研究.自动化学报, 2015, 41(9): 1686-1692 http://www.aas.net.cn/CN/abstract/abstract18742.shtmlSun Hui-Wen, Fu Yun-Fa, Xiong Xin, Yang Jun, Liu Chuan-Wei, Yu Zheng-Tao. Identification of EEG induced by motor imagery based on Hilbert-Huang transform. Acta Automatica Sinica, 2015, 41(9): 1686-1692 http://www.aas.net.cn/CN/abstract/abstract18742.shtml [19] Hsu W Y. Assembling a multi-feature EEG classifier for left-right motor imagery data using wavelet-based fuzzy approximate entropy for improved accuracy. International Journal of Neural Systems, 2015, 25(8): 1550037 doi: 10.1142/S0129065715500379 [20] Hsu W Y, Sun Y N. EEG-based motor imagery analysis using weighted wavelet transform features. Journal of Neuroscience Methods, 2009, 176(2): 310-318 doi: 10.1016/j.jneumeth.2008.09.014 [21] Wang H X. Optimizing spatial filters for single-trial EEG classification via a discriminant extension to CSP: The Fisher criterion. Medical & Biological Engineering & Computing, 2011, 49(9): 997-1001 https://www.researchgate.net/publication/50852065_Optimizing_spatial_filters_for_single-trial_EEG_classification_via_a_discriminant_extension_to_CSP_The_Fisher_criterion [22] 王金甲, 陈春.分层向量自回归的多通道脑电信号的特征提取研究.自动化学报, 2016, 42(8): 1215-1226 http://www.aas.net.cn/CN/abstract/abstract18911.shtmlWang Jin-Jia, Chen Chun. Multi-channel EEG feature extraction using hierarchical vector autoregression. Acta Automatica Sinica, 2016, 42(8): 1215-1226 http://www.aas.net.cn/CN/abstract/abstract18911.shtml [23] 杨帮华, 章云元, 何亮飞, 李华荣, 王倩.脑机接口中基于ICA-RLS的EOG伪迹自动去除.仪器仪表学报, 2015, 36(3): 668-674 http://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201503024.htmYang Bang-Hua, Zhang Yun-Yuan, He Liang-Fei, Li Hua-Rong, Wang Qian. Removal of EOG artifacts from EEG signals in BCI based on ICA-RLS. Chinese Journal of Scientific Instrument, 2015, 36(3): 668-674 http://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201503024.htm [24] He L H, Hu D, Wan M, Wen Y, von Deneen K M, Zhou M C. Common Bayesian network for classification of EEG-based multiclass motor imagery BCI. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016, 46(6): 843-854 doi: 10.1109/TSMC.2015.2450680 [25] Yuksel A, Olmez T. A neural network-based optimal spatial filter design method for motor imagery classification. PLoS One, 2015, 10(5): e0125039 doi: 10.1371/journal.pone.0125039 [26] Wu Z H, Huang N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Advances in Adaptive Data Analysis, 2011, 1(1): 1-41 https://www.researchgate.net/publication/282728306_Ensemble_empirical_mode_decomposition_A_noise-assisted_data_analysis_method [27] Huang N E, Shen Z, Long S R, Wu M C, Shih H H, Zheng Q A, Yen N C, Tung C C, Liu H H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995 doi: 10.1098/rspa.1998.0193 [28] BCI Competition Ⅱ [Online], available: http://www.bbci.de/competition/ii/, May 5, 2017. [29] BCI Competition Ⅲ [Online], available: http://www.bbci.de/competition/iii/, May 5, 2017. [30] BCI Competition Ⅳ [Online], available: http://www.bbci.de/competition/iv/, May 5, 2017. [31] Pfurtscheller G, Neuper C. Event-related synchronization of mu rhythm in the EEG over the cortical hand area in man. Neuroscience Letters, 1994, 174(1): 93-96 doi: 10.1016/0304-3940(94)90127-9 [32] 罗磊, 黄博妍, 孙金玮, 温良.基于总体平均经验模态分解的主动噪声控制系统研究.自动化学报, 2016, 42(9): 1432-1439 http://www.aas.net.cn/CN/abstract/abstract18931.shtmlLuo Lei, Huang Bo-Yan, Sun Jin-Wei, Wen Liang. A new ANC system based on ensemble empirical mode decomposition. Acta Automatica Sinica, 2016, 42(9): 1432-1439 http://www.aas.net.cn/CN/abstract/abstract18931.shtml [33] Yeh C L, Chang H C, Wu C H, Lee P L. Extraction of single-trial cortical beta oscillatory activities in EEG signals using empirical mode decomposition. Biomedical Engineering Online, 2010, 9: 25 doi: 10.1186/1475-925X-9-25 [34] Pincus S M. Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(6): 2297-2301 doi: 10.1073/pnas.88.6.2297 [35] Srinivasan V, Eswaran C, Sriraam N. Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Transactions on Information Technology in Biomedicine, 2007, 11(3): 288-295 doi: 10.1109/TITB.2006.884369 [36] Signorini M G, Magenes G, Cerutti S, Arduini D. Linear and nonlinear parameters for the analysis of fetal heart rate signal from cardiotocographic recordings. IEEE Transactions on Biomedical Engineering, 2003, 50(3): 365-374 doi: 10.1109/TBME.2003.808824 [37] Yu H, Yang J. A direct LDA algorithm for high-dimensional data with application to face recognition. Pattern Recognition, 2001, 34(10): 2067-2070 doi: 10.1016/S0031-3203(00)00162-X [38] Hariharan M, Fook C Y, Sindhu R, Ilias B, Yaacob S. A comparative study of wavelet families for classification of wrist motions. Computers & Electrical Engineering, 2012, 38(6): 1798-1807 http://profiles.wizfolio.com/Nazirah/publications/27945/183326/ [39] Schlögl A, Neuper C, Pfurtscheller G. Estimating the mutual information of an EEG-based brain-computer interface. Biomedizinische Technik. Biomedical Engineering, 2002, 47(1-2): 3-8 doi: 10.1515/bmte.2002.47.1-2.3 [40] 李明爱, 崔燕, 杨金福, 郝冬梅.基于HHT和CSSD的多域融合自适应脑电特征提取方法.电子学报, 2013, 41(12): 2479-2486 http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201312025.htmLi Ming-Ai, Cui Yan, Yang Jin-Fu, Hao Dong-Mei. An adaptive multi-domain fusion feature extraction with method HHT and CSSD. Acta Electronica Sinica, 2013, 41(12): 2479-2486 http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201312025.htm 期刊类型引用(33)
1. 杜鹏飞,李宪华,罗耀,邱洵. 小波包融合CWT的运动想象脑电信号识别算法. 洛阳理工学院学报(自然科学版). 2024(03): 49-55 . 百度学术
2. 雷敏,徐敏杰,黄幸,张梓寒,陈宇航,李翔宇,常静玲. 基于机器学习的急性缺血性中风的中医证型脑电特征的提取与实现. 环球中医药. 2024(11): 2271-2276 . 百度学术
3. 汤伟,耿逸飞. 基于DTCWT的运动想象脑电特征提取. 计算机应用与软件. 2023(04): 80-84+106 . 百度学术
4. 相晓嘉,兰珍,闫超,李子杏,唐邓清,周晗. 基于图表征和双重注意力机制的跨被试ERP检测. 计算机工程与应用. 2023(11): 160-167 . 百度学术
5. 尹春辉,许婷婷. EMD+AR模型在运动想象脑电处理中的应用. 信息与电脑(理论版). 2023(06): 70-73 . 百度学术
6. 杨森乔,王一峰,赵毅. 低成本惯性传感器的信号增强与手势识别. 传感技术学报. 2023(08): 1201-1209 . 百度学术
7. 刘淞华,何冰冰,郎恂,陈启明,张榆锋,苏宏业. 中值互补集合经验模态分解. 自动化学报. 2023(12): 2544-2556 . 本站查看
8. 柳长源,李文强,毕晓君. 基于RCNN-LSTM的脑电情感识别研究. 自动化学报. 2022(03): 917-925 . 本站查看
9. 朱永清,王文格. 脑电信号多维特征融合与分类算法研究. 计算机工程与应用. 2022(13): 146-153 . 百度学术
10. 郝国成,冯思权,王巍,凌斯奇,谭淞元. 基于NGWarblet-WVD的高质量时频分析方法. 自动化学报. 2022(10): 2526-2536 . 本站查看
11. 范凌霄,高云园,马玉良. 基于改进时频共空间模式的运动想象脑电信号分类. 传感技术学报. 2022(11): 1483-1490 . 百度学术
12. 刘帅,乌日开西·艾依提. 基于VMD与CSP的脑电特征提取方法. 计算机仿真. 2022(11): 432-437 . 百度学术
13. 张聪聪,常湛源,李传江. CEEMDAN与多特征融合的脑电信号识别研究. 计算机仿真. 2022(12): 366-372 . 百度学术
14. 潘奕竹,沈娜. 离散差分模块在癫痫脑电分类中的应用. 电子测量技术. 2021(01): 70-75 . 百度学术
15. 樊凤杰,白洋,纪会芳. 基于EEMD-ICA的脑电去噪算法研究. 计量学报. 2021(03): 395-400 . 百度学术
16. 张丹,张帅,李小俚,康健楠. 基于小波相干性算法的孤独症儿童脑电评估. 自动化学报. 2021(03): 678-684 . 本站查看
17. 郜东瑞,周晖,冯李逍,张云霞,彭茂琴,张永清. 基于特征融合和粒子群优化算法的运动想象脑电信号识别方法. 电子科技大学学报. 2021(03): 467-475 . 百度学术
18. 罗靖,王耀杰,刘光明,王晓帆,鲁晓锋,黑新宏. 面向运动想象脑电图识别的镜卷积神经网络. 中国图象图形学报. 2021(09): 2257-2269 . 百度学术
19. 冯源,李彦蕾,李一凡,张博,丁锦红,夏立坤. 基于注意力机制的多分支LSTM心理负荷评估模型. 计算机应用研究. 2021(11): 3371-3375 . 百度学术
20. 何群,杜硕,王煜文,陈晓玲,谢平. 基于变分模态分解与深度信念网络的运动想象分类识别研究. 计量学报. 2020(01): 90-99 . 百度学术
21. 詹瀛鱼,程良伦,王涛. 解相关多频率经验模态分解的故障诊断性能优化方法. 振动与冲击. 2020(01): 115-122+149 . 百度学术
22. 罗飞,刘鹏飞,罗元,朱思蒙. 多特征融合的运动想象脑电特征提取方法. 计算机应用. 2020(02): 616-620 . 百度学术
23. 王雪娇阳,王连明. 基于脑机接口竞赛脑电数据集的运动想象识别影响因素分析. 科学技术与工程. 2020(06): 2369-2375 . 百度学术
24. 陈妮,覃玉荣,熊艳婷,李卓然. 基于变分模态分解的脑电锁相刺激方法. 仪器仪表学报. 2020(05): 205-213 . 百度学术
25. 孟明,闫冉,高云园,佘青山. 基于多元变分模态分解的脑电多域特征提取方法. 传感技术学报. 2020(06): 853-860 . 百度学术
26. 张宪法,郝矿荣,陈磊. 免疫多域特征融合的多核学习SVM运动想象脑电信号分类. 自动化学报. 2020(11): 2417-2426 . 本站查看
27. 郝国成,谈帆,程卓,王巍,冯思权,张伟民. 强鲁棒性和高锐化聚集度的BGabor-NSPWVD时频分析算法. 自动化学报. 2019(03): 566-576 . 本站查看
28. 宋玉龙,赵冕,郑威. 基于经验模态分解和极限学习机的癫痫脑电提取分类研究. 生物医学工程研究. 2019(03): 263-268 . 百度学术
29. 何群,王煜文,杜硕,陈晓玲,谢平. 基于自适应无参经验小波变换和选择集成分类模型的运动想象. 物理学报. 2018(11): 284-295 . 百度学术
30. 孙小棋,李昕,蔡二娟,康健楠. 改进模糊熵算法及其在孤独症儿童脑电分析中的应用. 自动化学报. 2018(09): 1672-1678 . 本站查看
31. 孟明,杨国雨,高云园,甘海涛,罗志增. 基于EEMD与DSS-ApEn的脑电信号消噪方法. 传感技术学报. 2018(10): 1539-1546 . 百度学术
32. 何群,杜硕,张园园,江国乾,谢平. 融合单通道框架及多通道框架的运动想象分类. 仪器仪表学报. 2018(09): 20-29 . 百度学术
33. 李建华. 铁路直流线缆放电实时测量中扰动信号的抑制. 电气化铁道. 2018(06): 41-45 . 百度学术
其他类型引用(29)
-