2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bagging RCSP脑电特征提取算法

张毅 尹春林 蔡军 罗久飞

张毅, 尹春林, 蔡军, 罗久飞. Bagging RCSP脑电特征提取算法. 自动化学报, 2017, 43(11): 2044-2050. doi: 10.16383/j.aas.2017.c160094
引用本文: 张毅, 尹春林, 蔡军, 罗久飞. Bagging RCSP脑电特征提取算法. 自动化学报, 2017, 43(11): 2044-2050. doi: 10.16383/j.aas.2017.c160094
ZHANG Yi, YIN Chun-Lin, CAI Jun, LUO Jiu-Fei. Bagging RCSP Algorithm for Extracting EEG Feature. ACTA AUTOMATICA SINICA, 2017, 43(11): 2044-2050. doi: 10.16383/j.aas.2017.c160094
Citation: ZHANG Yi, YIN Chun-Lin, CAI Jun, LUO Jiu-Fei. Bagging RCSP Algorithm for Extracting EEG Feature. ACTA AUTOMATICA SINICA, 2017, 43(11): 2044-2050. doi: 10.16383/j.aas.2017.c160094

Bagging RCSP脑电特征提取算法

doi: 10.16383/j.aas.2017.c160094
基金项目: 

重庆市教委科学技术项目 KJ1600428

重庆市科学技术委员会项目 cstc2015jcyjBX0066

重庆市科学技术委员会项目 cstc2017jcyjAX0033

详细信息
    作者简介:

    张毅 重庆邮电大学先进制造工程学院教授.主要研究方向为机器人及应用, 脑电信号处理.E-mail:zhangyi@cqupt.edu.cn

    蔡军  重庆邮电大学自动化学院副教授.主要研究方向为模式识别, 智能控制.E-mail:caijun@cqupt.edu.cn

    罗久飞  重庆邮电大学先进制造工程学院讲师.主要研究方向为信号处理, 机械故障诊断与模式识别.E-mail:luojf@cqupt.edu.cn

    通讯作者:

    尹春林 重庆邮电大学自动化学院硕士研究生.主要研究方向为脑电信号处理.本文通信作者.E-mail:yinchunlin0210@foxmail.com

Bagging RCSP Algorithm for Extracting EEG Feature

Funds: 

Chong-qing Municipal Education Commission KJ1600428

Chongqing Science and Technology Commission Project cstc2015jcyjBX0066

Chongqing Science and Technology Commission Project cstc2017jcyjAX0033

More Information
    Author Bio:

    Professor at the School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications. His research interest covers robot and its applications, the signal processing of EEG

    Associate professor at the School of Automation, Chongqing University of Posts and Telecommunications. His research interest covers pattern recognition, intelligent control

    Lecturer at the School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications. His research interest covers signal processing, mechanical fault diagnosis, and pattern recognition

    Corresponding author: YIN Chun-Lin Master student at the School of Automation, Chongqing University of Posts and Telecommunications. His main research interest is signal processing of EEG. Corresponding author of this paper
  • 摘要: 正则化共空间模式(Regularized common spatial pattern,RCSP)解决了共空间模式(Common spatial pattern,CSP)对噪声敏感的问题,但它在小样本脑电数据集中的表现并不理想.针对上述问题,本文提出了Bagging RCSP(BRCSP)算法,通过Bagging方法重复选取训练数据来构造一个个包,并提取RCSP特征,再利用线性判别分析(Linear discriminant analysis,LDA)将特征向量映射到低维空间中,最后采用最近邻(Nearest neighborhood classifier,NNC)算法判定分类结果.线下实验证明,相比较聚合正则化共空间模式(RCSP with aggregation,RCSP-A),BRCSP的平均准确率提高了2.92%,且方差更小,鲁棒性更好.最后,在智能轮椅平台上,10位受试者利用BRCSP算法实现左右手运动想象脑电信号控制轮椅完成"8"字形路径的实验,证明了该算法在脑电信号特征提取中的有效性.
    1)  本文责任编委 赵新刚
  • 图  1  基于Bagging RCSP的左右手运动想象脑电信号处理过程

    Fig.  1  The process of EEG induced by the left hand and right hand motor imagery based on Bagging RCSP

    图  2  单个信号采集过程

    Fig.  2  The process of signal sampling

    图  3  左右手运动想象脑电信号的特征值分布

    Fig.  3  The distribution of eigenvalue of EEG induced by the left hand and right hand motor imagery

    图  4  BCI系统架构

    Fig.  4  BCI system architecture

    图  5  电极安放位置

    Fig.  5  Distribution of electrodes

    图  6  实验路径

    Fig.  6  The experimental route

    图  7  基于两种方法的BCI系统轨迹

    Fig.  7  The wheelchair track of two kinds of BCI system

    表  1  CSP、RCSP和Bagging RCSP在BCI Competition Ⅲ数据集IVa上的识别率比较

    Table  1  The recognition rate comparison of CSP, RCSP and Bagging RCSP on Competition Ⅲ data set IVa (%)

    算法 aa al av aw ay 平均 耗时(s)
    CSP 66.1 98.2 59.2 88.4 61.1 74.6 5.5
    LW-CSP 69.6 100.0 56.6 93.3 67.1 77.3 17.6
    SSCSP 73.2 96.4 54.8 70.5 73.4 73.5 6.7
    RCSP-A 76.8 98.2 74.5 92.9 77.0 83.9 62.2
    FERCSP 79.5 96.4 77.6 94.2 82.5 86.0 300.3
    BRCSP 79.3 98.6 78.3 92.9 82.5 86.3 63.3
    下载: 导出CSV

    表  2  RCSP-A和BRCSP算法下的离线识别率(%)

    Table  2  The recognition rate of off-line based on RCSP-A and BRCSP (%)

    受试者 RCSP-A BRCSP
    A1 80.53 86.16
    A2 95.81 93.04
    A3 75.56 81.08
    A4 84.74 87.56
    A5 78.06 83.61
    A6 87.78 90.56
    A7 84.72 87.50
    A8 93.83 96.06
    A9 85.42 87.56
    A10 76.29 78.78
    下载: 导出CSV

    表  3  RCSP-A和BRCSP算法的t-test结果

    Table  3  The result of t-test based on RCSP-A and BRCSP

    RCSP-A BRCSP
    均值 0.842740 0.871910
    标准差 0.0691799 0.0523412
    相关系数 0.955
    t -3.741
    df 9
    sig. (双侧) 0.005
    下载: 导出CSV
  • [1] Wolpaw J R, Birbaumer N, McFarland D J, Pfurtscheller G, Vaughan T M. Brain-computer interfaces for communication and control. Clinical Neurophysiology, 2002, 113(6):767-791 doi: 10.1016/S1388-2457(02)00057-3
    [2] 王行愚, 金晶, 张宇, 王蓓.脑控:基于脑——机接口的人机融合控制.自动化学报, 2013, 39(3):208-221 http://www.aas.net.cn/CN/abstract/abstract17800.shtml

    Wang Xing-Yu, Jin Jing, Zhang Yu, Wang Bei. Brain control:human-computer integration control based on brain-computer interface. Acta Automatica Sinica, 2013, 39(3):208-221 http://www.aas.net.cn/CN/abstract/abstract17800.shtml
    [3] Iturrate I, Antelis J M, Kübler A, Minguez J. A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation. IEEE Transactions on Robotics, 2009, 25(3):614-627 doi: 10.1109/TRO.2009.2020347
    [4] 伏云发, 徐保磊, 李永程, 李洪谊, 王越超, 余正涛.基于运动相关皮层电位握力运动模式识别研究.自动化学报, 2014, 40(6):1045-1057 http://www.aas.net.cn/CN/abstract/abstract18374.shtml

    Fu Yun-Fa, Xu Bao-Lei, Li Yong-Cheng, Li Hong-Yi, Wang Yue-Chao, Yu Zheng-Tao. Recognition of actual grip force movement modes based on movement-related cortical potentials. Acta Automatica Sinica, 2014, 40(6):1045-1057 http://www.aas.net.cn/CN/abstract/abstract18374.shtml
    [5] 张毅, 杨柳, 李敏, 罗元.基于AR和SVM的运动想象脑电信号识别.华中科技大学学报(自然科学版), 2011, 39(S2):103-106 http://d.wanfangdata.com.cn/Conference/7642363

    Zhang Yi, Yang Liu, Li Min, Luo Yuan. Recognition of motor imagery EEG based on AR and SVM. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2011, 39(S2):103-106 http://d.wanfangdata.com.cn/Conference/7642363
    [6] Hsu W Y. EEG-based motor imagery classification using neuro-fuzzy prediction and wavelet fractal features. Journal of Neuroscience Methods, 2010, 189(2):295-302 doi: 10.1016/j.jneumeth.2010.03.030
    [7] 孙会文, 伏云发, 熊馨, 杨俊, 刘传伟, 余正涛.基于HHT运动想象脑电模式识别研究.自动化学报, 2015, 41(9):1686-1692 http://www.aas.net.cn/CN/abstract/abstract18742.shtml

    Sun Hui-Wen, Fu Yun-Fa, Xiong Xin, Yang Jun, Liu Chuan-Wei, Yu Zheng-Tao. Identification of EEG induced by motor imagery based on Hilbert-Huang transform. Acta Automatica Sinica, 2015, 41(9):1686-1692 http://www.aas.net.cn/CN/abstract/abstract18742.shtml
    [8] Reuderink B, Poel M. Robustness of the Common Spatial Patterns Algorithm in the BCI-pipeline. Centre for Telematics and Information Technology, University of Twente, Twente, Netherlands, 2008. https://research.utwente.nl/en/publications/robustness-of-the-common-spatial-patterns-algorithm-in-the-bci-pi
    [9] Kang H, Nam Y, Choi S. Composite common spatial pattern for subject-to-subject transfer. IEEE Signal Processing Letters, 2009, 16(8):683-686 doi: 10.1109/LSP.2009.2022557
    [10] Arvaneh M, Guan C T, Ang K K, Quek H C. Spatially sparsed common spatial pattern to improve BCI performance. In:Proceedings of the 2011 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Prague, Czech Republic:IEEE, 2011. 2412-2415 http://ieeexplore.ieee.org/document/5946970/
    [11] Lotte F, Guan C. Regularizing common spatial patterns to improve BCI designs:unified theory and new algorithms. IEEE Transactions on Biomedical Engineering, 2011, 58(2):355-362 doi: 10.1109/TBME.2010.2082539
    [12] Su Y X, Li Y L, Wang S J. Filter ensemble regularized common spatial pattern for EEG classification. In:Proceedings of the 7th International Conference on Digital Image Processing (ICDIP15). Los Angeles, USA:SPIE, 2015. Article No. 963124 http://proceedings.spiedigitallibrary.org/article.aspx?articleid=2389141
    [13] Ang K K, Chin Z Y, Zhang H, Guan C T. Filter bank common spatial pattern (FBCSP) in brain-computer interface. In:Proceedings of the 2008 IEEE International Joint Conference on Neural Networks, 2008. Hong Kong, China:IEEE, 2008. 2390-2397 https://www.mendeley.com/research-papers/filter-bank-common-spatial-pattern-fbcsp-braincomputer-interface-5/
    [14] Data set IVa for the BCI competition Ⅲ[Online], available:http://www.bbci.de/competition/iii/, December 18, 2015
    [15] Tangermann M, Müller K R, Aertsen A, Birbaumer N, Braun C, Brunner C, Leeb R, Mehring C, Miller K J, Müller-Putz G R, Nolte G, Pfurtscheller G, Preissl H, Schalk G, Schlögl A, Vidaurre C, Waldert S, Blankertz B. Review of the BCI competition Ⅳ. Frontiers in Neuroscience, 2012, 6:Article No. 55 http://europepmc.org/articles/PMC3396284
    [16] Bamdadian A, Guan C T, Ang K K, Xu J X. Online semi-supervised learning with KL distance weighting for motor imagery-based BCI. In:Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). San Diego, CA, USA:IEEE, 2012. 2732-2735 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6346529
    [17] Long J Y, Li Y Q, Wang H T, Yu T Y, Pan J H, Li F. A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20(5):720-729 doi: 10.1109/TNSRE.2012.2197221
    [18] Yoo J, Yan L, El-Damak D, Altaf M A B, Shoeb A H, Chandrakasan A P. An 8-channel scalable EEG acquisition SoC with patient-specific seizure classification and recording processor. IEEE Journal of Solid-State Circuits, 2013, 48(1):214-228 doi: 10.1109/JSSC.2012.2221220
    [19] Neu D, Mairesse O, Verbanck P, Linkowski P, Le Bon O. Non-REM sleep EEG power distribution in fatigue and sleepiness. Journal of Psychosomatic Research, 2014, 76(4):286-291 doi: 10.1016/j.jpsychores.2014.02.002
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  2418
  • HTML全文浏览量:  371
  • PDF下载量:  452
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-27
  • 录用日期:  2017-02-13
  • 刊出日期:  2017-11-20

目录

    /

    返回文章
    返回