2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多通道解耦事件触发机制及其在光电传感网络中的应用

陈烨 李银伢 戚国庆 盛安冬

陈烨, 李银伢, 戚国庆, 盛安冬. 多通道解耦事件触发机制及其在光电传感网络中的应用. 自动化学报, 2017, 43(2): 227-237. doi: 10.16383/j.aas.2017.c160088
引用本文: 陈烨, 李银伢, 戚国庆, 盛安冬. 多通道解耦事件触发机制及其在光电传感网络中的应用. 自动化学报, 2017, 43(2): 227-237. doi: 10.16383/j.aas.2017.c160088
CHEN Ye, LI Yin-Ya, QI Guo-Qing, SHENG An-Dong. A Multi-channel Decoupled Event Triggered Transmission Mechanism and Its Application to Optic-electric Sensor Network. ACTA AUTOMATICA SINICA, 2017, 43(2): 227-237. doi: 10.16383/j.aas.2017.c160088
Citation: CHEN Ye, LI Yin-Ya, QI Guo-Qing, SHENG An-Dong. A Multi-channel Decoupled Event Triggered Transmission Mechanism and Its Application to Optic-electric Sensor Network. ACTA AUTOMATICA SINICA, 2017, 43(2): 227-237. doi: 10.16383/j.aas.2017.c160088

多通道解耦事件触发机制及其在光电传感网络中的应用

doi: 10.16383/j.aas.2017.c160088
基金项目: 

国家自然科学基金 61273076

国家自然科学基金 61104186

详细信息
    作者简介:

    李银伢 南京理工大学自动化学院副教授.主要研究方向为非线性估计理论及应用.E-mail:liyinya@mail.njust.edu.cn

    戚国庆 南京理工大学自动化学院副教授.主要研究方向为多传感器数据融合.E-mail:qiguoqing@mail.njust.edu.cn

    盛安冬 南京理工大学自动化学院教授.主要研究方向为多源信息融合, 非线性估计理论及应用.E-mail:shengandong@mail.njust.edu.cn

    通讯作者:

    陈烨 南京理工大学自动化学院博士研究生.主要研究方向为多源信息融合, 事件触发估计算法.本文通信作者.E-mail:0711370107@163.com

A Multi-channel Decoupled Event Triggered Transmission Mechanism and Its Application to Optic-electric Sensor Network

Funds: 

National Natural Science Foundation of China 61273076

National Natural Science Foundation of China 61104186

More Information
    Author Bio:

    Associate professor at the College of Automation, Nanjing University of Science and Technology. His research interest covers nonlinear estimation theory and application

    Associate professor at the College of Automation, Nanjing University of Science and Technology. His main research interest is multi-sensor information fusion

    Professor at the College of Automation, Nanjing University of Science and Technology. His research interest covers multi-source information fusion, and the nonlinear estimation theory and its application

    Corresponding author: CHEN Ye Ph. D. candidate at the College of Automation, Nanjing University of Science and Technology. His research interest covers information fusion and event-triggered estimation algorithm. Corresponding author of this paper
  • 摘要: 针对传感器网络融合估计中由能量受限引发的通信资源受限问题,提出了一种基于多通道解耦的事件触发量测传输机制.单独设计各传感器输出分量的事件触发条件并给出了估计算法误差有界性的条件,在保证融合估计精度的同时,可一定程度上降低传感器网络数据传输量.与现有三种方法的对比仿真结果以及火力控制系统中的光电传感网络实例,表明了所提算法的有效性和工程应用的可行性.
    1)  本文责任编委 陈积明
  • 图  1  多通道解耦的事件触发估计算法

    Fig.  1  The multi-channel decoupled event triggered estimation algorithm

    图  2  $\delta_{i}=30$ , $\bar{\delta}_{i}^{1}=\bar{\delta}_{i}^{2}=15$ 时3号传感器发送x位置及y位置量测分量至融合中心的概率

    Fig.  2  The probability of the x position and y position measurement sent by sensor No. 3 to fusion center per second when $\delta_{i}=30$ , $\bar{\delta}_{i}^{1}=\bar{\delta}_{i}^{2}=15$

    图  3  $\delta_{i}=6$ , $\bar{\delta}_{i}^{1}=\bar{\delta}_{i}^{2}=3$ 时传感器网络每时刻传输数据量及对应估计精度

    Fig.  3  The RMSE of the estimation of the network and its corresponding data transmission amount per second when $\delta_{i}=6$ , $\bar{\delta}_{i}^{1}=\bar{\delta}_{i}^{2}=3$

    图  4  $\delta_{i}=12$ , $\bar{\delta}_{i}^{1}=\bar{\delta}_{i}^{2}=6$ 时传感器网络每时刻传输数据量及对应估计精度

    Fig.  4  The RMSE of the estimation of the network and its corresponding data transmission per second when $\delta_{i}=12$ , $\bar{\delta}_{i}^{1}=\bar{\delta}_{i}^{2}=6$

    图  5  $\delta_{i}=30$ , $\bar{\delta}_{i}^{1}=\bar{\delta}_{i}^{2}=15$ 时传感器网络每时刻传输数据量及对应估计精度

    Fig.  5  The RMSE of the estimation of the network and its corresponding data transmission per second when $\delta_{i}=30$ , $\bar{\delta}_{i}^{1}=\bar{\delta}_{i}^{2}=15$

    图  6  多通道解耦事件触发机制与文献[17]中多通道耦合机制下传感器网络每时刻数据传输量及对应估计精度

    Fig.  6  The RMSE of the estimation of the network and its corresponding data transmission per second of multi-channel coupled and decoupled mechanism in [17]

    图  7  多通道解耦事件触发机制与文献[18]中多通道耦合机制下传感器网络每时刻数据传输量及对应估计精度

    Fig.  7  The RMSE of the estimation of the network and its corresponding data transmission per second of multi-channel coupled and decoupled mechanism in [18]

    图  8  多通道解耦事件触发机制下的光电传感网络目标跟踪示意图

    Fig.  8  The diagram of target tracking of the optic-electric sensor network with the multi-channel decoupled event triggered mechanism

    图  9  目标运动轨迹水平投影

    Fig.  9  The horizontal projection of target motion trajectory

    图  10  航路A三种通信机制下对目标估计精度及通信量

    Fig.  10  The RMSE and communication amounts under three communication mechanism for lane A

    图  11  航路B三种通信机制下对目标估计精度及通信量

    Fig.  11  The RMSE and communication amounts under three communication mechanism for lane B

    图  12  航路C三种通信机制下对目标估计精度及通信量

    Fig.  12  The RMSE and communication amounts under three communication mechanism for lane C

    表  1  $\delta_{i}=6$ , $\bar{\delta}_{i}^{1}=\bar{\delta}_{i}^{2}=3$ 时通信量频率及 $RMSE_{av}$

    Table  1  The data transmission amount rate and $RMSE_{av}$ when $\delta_{i}=6$ , $\bar{\delta}_{i}^{1}=\bar{\delta}_{i}^{2}=3$ }

    多通道解耦 多通道耦合
    通信量频率 0.7500 0.8986
    RMSEav 1.8733 1.8716
    下载: 导出CSV

    表  2  $\delta_{i}=12$ , $\bar{\delta}_{i}^{1}=\bar{\delta}_{i}^{2}=6$ 时通信量频率及 $RMSE_{av}$

    Table  2  The data transmission amount rate and $RMSE_{av}$ when $\delta_{i}=12$ , $\bar{\delta}_{i}^{1}=\bar{\delta}_{i}^{2}=6$

    多通道解耦 多通道耦合
    通信量频率 0.6645 0.8091
    RMSEav 1.8878 1.8845
    下载: 导出CSV

    表  3  $\delta_{i}=30$ , $\bar{\delta}_{i}^{1}=\bar{\delta}_{i}^{2}=15$ 时通信量频率及 $RMSE_{av}$

    Table  3  The data transmission amount rate and $RMSE_{av}$ when $\delta_{i}=30$

    多通道解耦 多通道耦合
    通信量频率 0.4785 0.5987
    RMSEav 1.9654 1.9608
    下载: 导出CSV

    表  4  火控系统空情信息核心数据发送协议

    Table  4  The core data transmission protocol of the fire control system

    x位置 x速度 y位置 y速度 z位置 z速度
    字长 2字节 2字节 2字节 2字节 2字节 2字节
    下载: 导出CSV
  • [1] 岳元龙, 左信, 罗雄麟.提高测量可靠性的多传感器数据融合有偏估计方法.自动化学报, 2014, 40(9):1843-1852 http://www.aas.net.cn/CN/abstract/abstract18453.shtml

    Yue Yuan-Long, Zuo Xin, Luo Xiong-Lin. Improving measurement reliability with biased estimation for multi-sensor data fusion. Acta Automatica Sinica, 2014, 40(9):1843-1852 http://www.aas.net.cn/CN/abstract/abstract18453.shtml
    [2] 薛东国, 陈博, 张文安, 俞立.通信受限下网络化多传感器系统的Kalman融合估计.自动化学报, 2015, 41(1):203-208 http://www.aas.net.cn/CN/abstract/abstract18599.shtml

    Xue Dong-Guo, Chen Bo, Zhang Wen-An, Yu Li. Kalman fusion estimation for networked multi-sensor fusion systems with communication constraints. Acta Automatica Sinica, 2015, 41(1):203-208 http://www.aas.net.cn/CN/abstract/abstract18599.shtml
    [3] 赵国荣, 韩旭, 卢建华.一种基于数据驱动传输策略的带宽受限的分布式融合估计器.自动化学报, 2015, 41(9):1649-1658 http://www.aas.net.cn/CN/abstract/abstract18738.shtml

    Zhao Guo-Rong, Han Xu, Lu Jian-Hua. A decentralized fusion estimator using data-driven communication strategy subject to bandwidth constraints. Acta Automatica Sinica, 2015, 41(9):1649-1658 http://www.aas.net.cn/CN/abstract/abstract18738.shtml
    [4] Cattivelli F S, Lopes C G, Sayed A H. Diffusion recursive least-squares for distributed estimation over adaptive networks. IEEE Transactions on Signal Processing, 2008, 56(5):1865-1877 doi: 10.1109/TSP.2007.913164
    [5] Bokareva T, Hu W, Kanhere S, Ristic B, Gordon N, Bessell T, Rutten M, Jha S. Wireless sensor networks for battlefield surveillance. In:Proceedings of the 2006 Land Warfare Conference. Brisbane, Australia:APDR, 2006. 1-8
    [6] Huo H W, Xu Y Z, Yan H R, Mubeen S, Zhang H K. An elderly health care system using wireless sensor networks at home. In:Proceedings of the 3rd International Conference on Sensor Technologies and Applications. Athens/Glyfada, Greece:IEEE, 2009. 158-163 http://ieeexplore.ieee.org/abstract/document/5210943/
    [7] Santini S, Ostermaier B, Vitaletti A. First experiences using wireless sensor networks for noise pollution monitoring. In:Proceedings of the 3rd ACM Workshop on Real-World Wireless Sensor Networks. Glasgow, Scotland:ACM, 2008. 61-65 http://dl.acm.org/citation.cfm?id=1435490
    [8] Gungor V C, Hancke G P. Industrial wireless sensor networks:challenges, design principles, and technical approaches. IEEE Transactions on Industrial Electronics, 2009, 56(10):4258-4265 doi: 10.1109/TIE.2009.2015754
    [9] Gungor V C, Lu B, Hancke G P. Opportunities and challenges of wireless sensor networks in smart grid. IEEE Transactions on Industrial Electronics, 2010, 57(10):3557-3564 doi: 10.1109/TIE.2009.2039455
    [10] Trimpe S, D'Andrea R. Event-based state estimation with variance-based triggering. IEEE Transactions on Automatic Control, 2014, 59(12):3266-3281 doi: 10.1109/TAC.2014.2351951
    [11] Åström K J, Bernhardsson B M. Comparison of Riemann and Lebesgue sampling for first order stochastic systems. In:Proceedings of the 41st IEEE Conference on Decision and Control. Las Vegas, NV, USA:IEEE, 2002. 2011-2016 http://ieeexplore.ieee.org/abstract/document/1184824/
    [12] Feeney L M, Nilsson M. Investigating the energy consumption of a wireless network interface in an ad hoc networking environment. In:Proceedings of the 20th Annual Joint Conference of the IEEE Computer and Communications Societies. Anchorage, Alaska, USA:IEEE, 2001. 1548-1557 http://ieeexplore.ieee.org/abstract/document/916651/
    [13] Shnayder V, Hempstead M, Chen B, Allen G W, Welsh M. Simulating the power consumption of large-scale sensor network applications. In:Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems. Baltimore, Maryland, USA:ACM, 2004. 188-200 http://dl.acm.org/citation.cfm?id=1031518
    [14] Imer O C, Basar T. Optimal estimation with limited measurements. In:Proceedings of the 44th IEEE Conference on Decision and Control. Seville, Spain:IEEE, 2005. 1029-1034 http://ieeexplore.ieee.org/abstract/document/1582293/
    [15] Rabi M, Moustakides G V, Baras J S. Multiple sampling for estimation on a finite horizon. In:Proceedings of the 45th IEEE Conference on Decision and Control. San Diego, USA:IEEE, 2006. 1351-1357 http://ieeexplore.ieee.org/abstract/document/4178072/
    [16] Li L C, Lemmon M, Wang X F. Event-triggered state estimation in vector linear processes. In:Proceedings of the 2010 American Control Conference. Baltimore, Maryland, USA:IEEE, 2010. 2138-2143 http://ieeexplore.ieee.org/abstract/document/5531338/
    [17] Wu J F, Jia Q S, Johansson K H, Shi L. Event-based sensor data scheduling:trade-off between communication rate and estimation quality. IEEE Transactions on Automatic Control, 2013, 58(4):1041-1046 doi: 10.1109/TAC.2012.2215253
    [18] Shi D W, Chen T W, Shi L. An event-triggered approach to state estimation with multiple point-and set-valued measurements. Automatica, 2014, 50(6):1641-1648 doi: 10.1016/j.automatica.2014.04.004
    [19] Battistelli G, Benavoli A, Chisci L. Data-driven communication for state estimation with sensor networks. Automatica, 2012, 48(5):926-935 doi: 10.1016/j.automatica.2012.02.028
    [20] Anderson B D O, Moore J B. Detectability and stabilizability of time-varying discrete-time linear systems. SIAM Journal on Control and Optimization, 1981, 19(1):20-32 doi: 10.1137/0319002
    [21] Duan Z S, Han C Z, Li X R. Comments on "unbiased converted measurements for tracking". IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(4):1374-1377 doi: 10.1109/TAES.2004.1386889
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  2668
  • HTML全文浏览量:  206
  • PDF下载量:  809
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-27
  • 录用日期:  2016-04-09
  • 刊出日期:  2017-02-01

目录

    /

    返回文章
    返回