-
摘要: 针对目前彩色图像灰度化难以充分保留原彩色图像对比度的问题,本文提出了基于最大加权投影求解的彩色图像灰度化模型及算法.首先,在好的彩色图像灰度化算法应使灰度化图像具有最大对比度的假设下,本模型提出最大加权投影的目标优化函数,并且将原始彩色图像梯度权重引入到最大化函数中,使得原彩色图像中对比度较小的区域也能够在灰度化后的图像中得到保持.每个彩色通道梯度的高斯加权系数反映灰度图像的对比度和原彩色图像的颜色顺序.其次,对所提模型使用参数离散搜索策略求解,通过对线性离散参数模型产生的候选图像进行搜索,由于只有几个算术运算,计算速度较快.最后,为评价所提出算法在复杂场景下图像灰度化对比度保持性能,本文对Cadik、CSDD和COLOR250数据集分别进行灰度化实验.定性和定量实验结果表明,所提算法相比于其他算法能较好地保留原彩色图像颜色对比度,同时具有对噪声鲁棒和运算速度快的优势.Abstract: This paper presents a color-to-gray conversion model for faithfully preserving the contrast details of the original color image. First, on the basic assumption that a good gray conversion should make the conveyed gradient values to be maximal, we present a maximum weighted projection function to model the decolorization procedure, incorporating weights of the original gradients into the maximization problem. The Gaussian weighted factor consisting of the gradients of indivisual channels of the input color image is employed to better reflect the degree of preserving feature discriminability and color ordering. Second, a discrete searching solver is proposed by determining the solution with the loss function value from the linear parametric model-induced candidate images. The non-iterative solver has advantages in simplicity and speed with only several simple arithmetic operations, leading to real-time computational speed. Finally, extensive experimental evaluations on the existing datasets show that the proposed method outperforms the state-of-the-art methods quantitatively and qualitatively.
-
表 1 Cadik数据集的CCPR值
Table 1 CCPR value of Cadik dataset
τ Gooch rgb2gray CP RTCP MWPDe 1 0.96 0.93 0.97 0.96 0.96 2 0.93 0.88 0.94 0.94 0.94 3 0.91 0.84 0.92 0.92 0.92 4 0.89 0.8 0.91 0.9 0.91 5 0.87 0.77 0.89 0.89 0.9 6 0.85 0.75 0.87 0.87 0.88 7 0.83 0.73 0.86 0.86 0.87 8 0.81 0.71 0.84 0.85 0.86 9 0.79 0.69 0.83 0.83 0.85 10 0.77 0.68 0.82 0.82 0.84 11 0.75 0.66 0.8 0.8 0.84 12 0.72 0.65 0.79 0.79 0.83 13 0.7 0.63 0.77 0.77 0.82 14 0.69 0.62 0.76 0.76 0.81 15 0.67 0.61 0.75 0.75 0.81 表 2 CSDD数据集的CCPR值
Table 2 CCPR value of CSDD dataset
τ Gooch rgb2gray CP RTCP MWPDe 1 0.97 0.96 0.96 0.96 0.95 2 0.93 0.94 0.93 0.93 0.92 3 0.91 0.91 0.91 0.91 0.91 4 0.89 0.89 0.89 0.9 0.89 5 0.87 0.87 0.87 0.88 0.88 6 0.85 0.85 0.85 0.87 0.86 7 0.83 0.83 0.83 0.85 0.85 8 0.81 0.81 0.81 0.84 0.84 9 0.79 0.8 0.79 0.82 0.83 10 0.77 0.78 0.77 0.81 0.82 11 0.76 0.76 0.75 0.8 0.81 12 0.74 0.75 0.74 0.78 0.8 13 0.73 0.73 0.72 0.77 0.79 14 0.71 0.71 0.7 0.76 0.78 15 0.7 0.68 0.7 0.75 0.77 表 3 COLOR250数据集的CCPR值
Table 3 CCPR value of COLOR250
τ Gooch rgb2gray CP RTCP MWPDe 1 0.95 0.96 0.96 0.96 0.95 2 0.92 0.93 0.93 0.93 0.92 3 0.89 0.9 0.9 0.9 0.9 4 0.86 0.87 0.88 0.88 0.88 5 0.83 0.85 0.86 0.86 0.86 6 0.81 0.83 0.84 0.84 0.85 7 0.79 0.81 0.82 0.83 0.83 8 0.76 0.79 0.8 0.81 0.82 9 0.74 0.77 0.79 0.8 0.81 10 0.72 0.75 0.77 0.78 0.8 11 0.7 0.74 0.76 0.77 0.79 12 0.68 0.72 0.74 0.76 0.78 13 0.67 0.7 0.73 0.75 0.77 14 0.65 0.69 0.72 0.74 0.76 15 0.63 0.67 0.7 0.72 0.75 表 4 噪声情况下Cadik数据集的CCPR值
Table 4 CCPR value of Cadik dataset with noise added
τ rgb2gray CP RTCP MWPDe 1 0.92 0.95 0.94 0.96 2 0.86 0.91 0.91 0.92 3 0.82 0.87 0.88 0.89 4 0.78 0.84 0.85 0.86 5 0.74 0.82 0.84 0.84 6 0.72 0.79 0.82 0.82 7 0.7 0.77 0.81 0.81 8 0.68 0.75 0.8 0.79 9 0.66 0.73 0.78 0.78 10 0.65 0.71 0.77 0.77 11 0.63 0.7 0.76 0.76 12 0.62 0.68 0.75 0.75 13 0.61 0.66 0.74 0.74 14 0.6 0.65 0.73 0.74 15 0.58 0.64 0.72 0.73 表 5 输入390×293彩色图像时不同算法的运行时间
Table 5 Runtime of different algorithms with the input 390×293 color image
Methods Gooch rgb2gray CP RTCP MWPDe Runtime (s) 3.00E+04 0.0048 0.5233 0.0728 0.0343 -
[1] Bala R, Eschbach R. Spatial color-to-grayscale transform preserving chrominance edge information. In: Proceedings of the 12th Color Imaging Conference: Color Science and Engineering Systems, Technologies, and Applications. Scottsdale, USA: The Society for Imaging Science and Technology, 2004. 82-86 [2] Neumann L, Čadík M, Nemcsics A. An efficient perception-based adaptive color to gray transformation. In: Proceedings of the 3rd Eurographics conference on Computational Aesthetics in Graphics, Visualization and Imaging. Switzerland: Eurographics Association, 2007. 73-80 [3] Smith K, Landes P-E, Thollot J, Myszkowski K. Apparent greyscale: a simple and fast conversion to perceptually accurate images and video. Computer Graphics Forum, 2008, 27(2): 193-200 doi: 10.1111/j.1467-8659.2008.01116.x [4] Gooch A A, Olsen S C, Tumblin J, Gooch B. Color2gray: salience-preserving color removal. ACM Transactions on Graphics, 2005, 24(3): 634-639 doi: 10.1145/1073204 [5] Rasche K, Geist R, Westall J. Detail preserving reproduction of color images for monochromats and dichromats. IEEE Computer Graphics and Applications, 2005, 25(3): 22-30 doi: 10.1109/MCG.2005.54 [6] Kim Y, Jang C, Demouth J, Lee S. Robust color-to-gray via nonlinear global mapping. ACM Transactions on Graphics, 2009, 28(5): Article No.161 [7] Du H, He S F, Sheng B, Ma L Z, Lau R W H. Saliency-guided color-to-gray conversion using region-based optimization. IEEE Transactions on Image Processing, 2015, 24(1): 434-443 doi: 10.1109/TIP.2014.2380172 [8] Song M L, Tao D P, Chen C, Li X L, Chen C W. Color to gray: visual cue preservation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1537-1552 doi: 10.1109/TPAMI.2009.74 [9] Song M L, Tao D P, Chen C, Bu J J, Yang Y Z. Color-to-gray based on chance of happening preservation. Neurocomputing, 2013, 119: 222-231 doi: 10.1016/j.neucom.2013.03.037 [10] 宋明黎, 王慧琼, 孙陈纯.基于高斯混合模型的色彩转换.计算机辅助设计与图形学学报, 2008, 20(11): 1471-1476 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJF200811014.htmSong Ming-Li, Wang Hui-Qiong, Sun Chen-Chun. Gaussian mixture model based approach on color transfer. Journal of Computer-Aided Design and Computer Graphics, 2008, 20(11): 1471-1476 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJF200811014.htm [11] 王辉, 陈小雕, 王毅刚.改进的非线性全局映射灰度化方法.计算机辅助设计与图形学学报, 2013, 25(10): 1476-1479 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201310007.htmWang Hui, Chen Xiao-Diao, Wang Yi-Gang. The improved color-to-gray via nonlinear global mapping. Journal of Computer-Aided Design and Computer Graphics, 2013, 25(10): 1476-1479 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201310007.htm [12] 朱薇, 刘利刚. IHLS颜色空间的灰度化全局非线性三向映射.计算机辅助设计与图形学学报, 2013, 25(2): 154-159 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201302003.htmZhu Wei, Liu Li-Gang. Decolorize nonlinear tri-mapping in IHLS color space. Journal of Computer-Aided Design and Computer Graphics, 2013, 25(2): 154-159 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201302003.htm [13] Lu C W, Xu L, Jia J Y. Contrast preserving decolorization. In: Proceedings of the 2012 IEEE International Conference on Computational Photography. Seattle, WA, USA: IEEE, 2012. 1-7 [14] Lu C W, Xu L, Jia J Y. Real-time contrast preserving decolorization. In: Proceedings of the SIGGRAPH Asia 2012 Technical Briefs. Singapore, Singapore: ACM, 2012. Article No.34 [15] Lu C W, Xu L, Jia J Y. Contrast preserving decolorization with perception-based quality metrics. International Journal of Computer Vision, 2014, 110(2): 222-239 doi: 10.1007/s11263-014-0732-6 [16] Song Y B, Bao L C, Yang Q X. Real-time video decolorization using bilateral filtering. In: Proceedings of the 2014 IEEE Winter Conference on Applications of Computer Vision. Steamboat Springs, CO, USA: IEEE, 2014. 159-166 [17] Liu Q G, Liu X P, Xie W S, Wang Y H, Liang D. GcsDecolor: gradient correlation similarity for efficient contrast preserving decolorization. IEEE Transactions on Image Processing, 2015, 24(9): 2889-2904 doi: 10.1109/TIP.2015.2423615 [18] Lu G F, Lin Z, Jin Z. Face recognition using regularised generalised discriminant locality preserving projections. IET Computer Vision, 2011, 5(2): 107-116 doi: 10.1049/iet-cvi.2009.0138 [19] Vasuhi S, Vaidehi V. Identification of human faces using orthogonal locality preserving projections. In: Proceedings of the 2009 International Conference on Signal Processing Systems. Singapore, Singapore: IEEE, 2009. 718-722 [20] Gu X H, Yang L P, Peng J. Face recognition with discriminant locality preserving projections in complete kernel space. In: Proceedings of the 2011 International Conference on Computer Science and Network Technology. Harbin, China: IEEE, 2011. 1166-1169 [21] Yi J, Ruan Q Q. Gabor-based improved locality preserving projections for face recognition. In: Proceedings of the 2007 IEEE International Conference on Image Processing. San Antonio, TX, USA: IEEE, 2007. I-153-I-156 [22] Lin C, Sun X R, Zhou K J, Xia F. Supervised gabor-based kernel locality preserving projections for face recognition. In: Proceedings of the 2011 International Conference on and 4th International Conference on Cyber, Physical and Social Computing Internet of Things (iThings/CPSCom). Dalian, China: IEEE, 2011. 252-257 [23] Wang H X. A new feature extraction method for image recognition using structural two-dimensional locality preserving projections. In: Proceedings of the 16th IEEE International Conference on Image Processing. Cairo, Egypt: IEEE, 2009. 2037-2040 [24] Yi J, Ruan Q Q. An image matrix compression based supervised locality preserving projections for face recognition. In: Proceedings of the 2007 International Symposium on Intelligent Signal Processing and Communications Systems. Xiamen, China: IEEE, 2007. 738-741 [25] He X F, Yan S C, Hu Y X, Niyogi P, Zhang H J. Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340 doi: 10.1109/TPAMI.2005.55 [26] Čadík M. Perceptual evaluation of color-to-grayscale image conversions. Computer Graphics Forum, 2008, 27(7): 1745-1754 doi: 10.1111/cgf.2008.27.issue-7