2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非支配排序差异演化的应急资源多目标分配算法

苏兆品 张国富 蒋建国 岳峰 张婷

苏兆品, 张国富, 蒋建国, 岳峰, 张婷. 基于非支配排序差异演化的应急资源多目标分配算法. 自动化学报, 2017, 43(2): 195-214. doi: 10.16383/j.aas.2017.c160076
引用本文: 苏兆品, 张国富, 蒋建国, 岳峰, 张婷. 基于非支配排序差异演化的应急资源多目标分配算法. 自动化学报, 2017, 43(2): 195-214. doi: 10.16383/j.aas.2017.c160076
SU Zhao-Pin, ZHANG Guo-Fu, JIANG Jian-Guo, YUE Feng, ZHANG Ting. Multi-objective Approach to Emergency Resource Allocation Using None-dominated Sorting Based Differential Evolution. ACTA AUTOMATICA SINICA, 2017, 43(2): 195-214. doi: 10.16383/j.aas.2017.c160076
Citation: SU Zhao-Pin, ZHANG Guo-Fu, JIANG Jian-Guo, YUE Feng, ZHANG Ting. Multi-objective Approach to Emergency Resource Allocation Using None-dominated Sorting Based Differential Evolution. ACTA AUTOMATICA SINICA, 2017, 43(2): 195-214. doi: 10.16383/j.aas.2017.c160076

基于非支配排序差异演化的应急资源多目标分配算法

doi: 10.16383/j.aas.2017.c160076
基金项目: 

国家自然科学基金 61371155

安徽省科技攻关计划 1301b042023

安徽省自然科学基金 1608085MF131

安徽省自然科学基金 1508085MF132

国家自然科学基金 61573125

安徽省自然科学基金 1508085QF129

详细信息
    作者简介:

    苏兆品 合肥工业大学计算机与信息学院副教授, IEEE会员.2008年获得合肥工业大学计算机科学与技术专业博士学位.主要研究方向为演化计算, 灾害应急决策, 多媒体安全.E-mail:szp@hfut.edu.cn

    蒋建国 合肥工业大学计算机与信息学院教授, 中国计算机学会高级会员.1989年获得合肥工业大学信号、电路与系统专业硕士学位.主要研究方向为分布式智能系统和数字图像处理与分析.E-mail:jgjiang@hfut.edu.cn

    岳峰 合肥工业大学科学技术研究院副研究员.2015年获得合肥工业大学计算机科学与技术专业博士学位.主要研究方向为软件工程和演化计算.E-mail:yuefeng@hfut.edu.cn

    张婷 合肥工业大学计算机与信息学院硕士研究生.2012年获得佛山科学技术学院计算机科学与技术专业学士学位.主要研究方向为灾害应急决策和演化计算.E-mail:tzhang@mail.hfut.edu.cn

    通讯作者:

    张国富 合肥工业大学计算机与信息学院副教授, 中国自动化学会、IEEE会员.2008年获得合肥工业大学计算机科学与技术专业博士学位.主要研究方向为计算智能, 多Agent系统, 基于搜索的软件工程.本文通信作者.E-mail:zgf@hfut.edu.cn

Multi-objective Approach to Emergency Resource Allocation Using None-dominated Sorting Based Differential Evolution

Funds: 

National Natural Science Foundation of China 61371155

Key Projects of Science and Technology of Anhui Province 1301b042023

Anhui Provincial Natural Science Foundation 1608085MF131

Anhui Provincial Natural Science Foundation 1508085MF132

National Natural Science Foundation of China 61573125

Anhui Provincial Natural Science Foundation 1508085QF129

More Information
    Author Bio:

    Associate professor at the School of Computer and Information, Hefei University of Technology. She is a member of IEEE. She received her Ph. D. degree in computer science and technology from Hefei University of Technology in 2008. Her research interest covers evolutionary computation, disaster emergency decision-making, and multimedia security

    Professor at the School of Computer and Information, Hefei University of Technology. He is a senior member of China Computer Federation (CCF). He received his master degree in signals, circuits, and systems from Hefei University of Technology in 1989. His research interest covers distributed intelligent systems and digital image processing and analysis

    Associate professor at the Institute of Science and Technology Management, Hefei University of Technology. He received his Ph. D. degree in computer science and technology from Hefei University of Technology in 2015. His research interest covers software engineering and evolutionary computation

    Master student at the School of Computer and Information, Hefei University of Technology. She received her bachelor degree in computer science and technology from Foshan University in 2012. Her research interest covers disaster emergency decision-making and evolutionary computation

    Corresponding author: ZHANG Guo-Fu Associate professor at the School of Computer and Information, Hefei University of Technology. He is a member of Chinese Association of Automation (CAA) and IEEE. He received his Ph. D. degree in computer science and technology from Hefei University of Technology in 2008. His research interest covers computational intelligence, multi-agent systems, and search-based software engineering. Corresponding author of this paper
  • 摘要: 应急资源分配(Emergency resource allocation,ERA)是灾害应急管理中的核心环节,主要研究如何高效合理地把各储备点的应急救援物资分配给各发放点.然而,在大规模突发灾害发生后,每个发放点极可能会同时向多个储备点请求多种救援物资,从而带来潜在的应急资源冲突.为此,本文首先构建了考虑应急资源冲突消解的多储备点、多发放点、多种救援物资的应急资源多目标优化模型,并提出了一种基于非支配排序差异演化和编码修正机制的应急资源多目标分配算法.对比实验结果表明,该算法在大规模样本下能够从全局角度同时给出多个发放点的应急资源分配方案,有效实现多个储备点同时为多个发放点协同配备应急资源,而且不会产生任何应急资源冲突,为解决应急资源受限情况下的大规模应急资源分配问题提供了一个有益的尝试.
    1)  本文责任编委 赵千川
  • 图  1  应急联盟

    Fig.  1  Emergency coalition

    图  2  DE算法流程图

    Fig.  2  Flowchart of DE

    图  3  二维整数向量编码

    Fig.  3  Two-dimensional integer vector encoding

    图  4  基于非支配排序的选择操作

    Fig.  4  None-dominated sorting based selection

    图  5  ERNS-DE算法流程图

    Fig.  5  Flowchart of ERNS-DE

    图  6  En 1中储备点和发放点的分布图

    Fig.  6  Reserve and dispatch points in En 1

    图  7  En 2中储备点和需求点的分布图

    Fig.  7  Reserve and dispatch points in En 2

    图  8  四种算法的运行时间

    Fig.  8  Running time of four algorithms

    图  9  En 1环境中四种算法的Pareto最优解个数

    Fig.  9  Numbers of Pareto solutions obtained by the four algorithms in En 1

    图  10  En 1环境中四种算法的Pareto最优解集

    Fig.  10  Pareto solution sets obtained by the four algorithms in En 1

    图  11  En 2环境中四种算法的Pareto最优解个数

    Fig.  11  Numbers of Pareto solutions obtained by the four algorithms in En 2

    图  12  En 2环境中四种算法的Pareto最优解集

    Fig.  12  Pareto solution sets obtained by the four algorithms in En 2

    图  13  两种算法在每种环境中给出的应急联盟分布图

    Fig.  13  Distribution chart of emergency coalitions

    表  1  ERNS-DE算法的参数设置

    Table  1  Parameters setting for ERNS-DE

    最大迭代次数 种群规模PS 缩放因子F 交叉概率CR
    500 30 0.55 0.76
    下载: 导出CSV

    表  2  两种算法在En 1环境中Pareto最优解

    Table  2  Pareto solutions obtained by two algorithms in En 1

    ERA参数情形 算法 Pareto最优解集(f1, f2)
    Case 1 ERNS-DE (162, 242), (181, 218), (185, 214), (171, 228), (164, 235), (187, 212),
    (169, 230), (173, 226), (154, 252), (180, 219), (189, 210), (175, 224),
    (155, 250), (168, 231), (165, 234), (194, 208), (183, 216), (184, 215),
    (170, 229), (167, 232), (179, 220), (166, 233), (178, 221), (163, 236),
    (186, 213), (176, 223), (172, 227), (182, 217), (157, 247), (177, 222)
    LPNO-HA (155, 275)
    Case 2 ERNS-DE (194, 302), (205, 287), (193, 303), (209, 285), (199, 294), (191, 308),
    (192, 306), (201, 291), (187, 312), (189, 309), (195, 300)
    LPNO-HA (196, 303)
    下载: 导出CSV

    表  3  两种算法在En 2环境中Pareto最优解

    Table  3  Pareto solutions obtained by two algorithms in En 2

    ERA参数情形 算法 Pareto最优解集(f1, f2)
    Case 1 ERNS-DE (158, 252), (181, 218), (188, 211), (166, 233), (169, 230), (177, 222),
    (159, 246), (182, 217), (187, 212), (176, 223), (185, 214), (170, 229),
    (180, 219), (165, 235), (173, 226), (163, 239), (164, 237), (172, 227),
    (189, 210), (168, 231), (157, 253), (183, 216), (175, 224), (193, 209),
    (186, 213), (156, 254), (178, 221), (167, 232), (154, 259), (196, 208)
    LPNO-HA (155, 283)
    Case 2 ERNS-DE (203, 274), (205, 271), (199, 276), (189, 289), (187, 293), (183, 313), (196, 278)
    (185, 306), (200, 275), (192, 286), (195, 281), (180, 320), (190, 288)
    LPNO-HA (189, 293)
    下载: 导出CSV
  • [1] Wang Z F. A preliminary report on the great Wenchuan earthquake. Earthquake Engineering and Engineering Vibration, 2008, 7(2):225-234 doi: 10.1007/s11803-008-0856-1
    [2] Yuan Y F. Impact of intensity and loss assessment following the great Wenchuan earthquake. Earthquake Engineering and Engineering Vibration, 2008, 7(3):247-254 doi: 10.1007/s11803-008-0893-9
    [3] Bilham R. Disaster management:preparing for the worst. Nature, 2013, 502(7472):438-439 https://www.researchgate.net/publication/303241398_Disaster_management_Preparing_for_the_worst
    [4] Nourbakhsh I, Sargent R, Wright A, Cramer K, McClendon B, Jones M. Mapping disaster zones. Nature, 2006, 439(7078):787-788 doi: 10.1038/439787a
    [5] Sun B Z, Ma W M, Zhao H Y. A fuzzy rough set approach to emergency material demand prediction over two universes. Applied Mathematical Modelling, 2013, 37(10-11):7062-7070 doi: 10.1016/j.apm.2013.02.008
    [6] Başar A, Çatay B, Ünlüyurt T. A taxonomy for emergency service station location problem. Optimization Letters, 2012, 6(6):1147-1160 doi: 10.1007/s11590-011-0376-1
    [7] Lee Y M, Ghosh S, Ettl M. Simulating distribution of emergency relief supplies for disaster response operations. In:Proceedings of the 2009 Winter Simulation Conference. Austin, TX, USA:IEEE, 2009. 2797-2808 http://dl.acm.org/citation.cfm?id=1995837
    [8] Su Z P, Jiang J G, Liang C Y, Zhang G F. Path selection in disaster response management based on Q-learning. International Journal of Automation and Computing, 2011, 8(1):100-106 doi: 10.1007/s11633-010-0560-2
    [9] 孙绪彬, 董海荣, 宁滨, 高童欣, 孔庆杰.基于ACP方法的应急疏散系统研究.自动化学报, 2014, 40(1):16-23 http://www.aas.net.cn/CN/abstract/abstract18262.shtml

    Sun Xu-Bin, Dong Hai-Rong, Ning Bin, Gao Tong-Xin, Kong Qing-Jie. ACP-based emergency evacuation system. Acta Automatica Sinica, 2014, 40(1):16-23 http://www.aas.net.cn/CN/abstract/abstract18262.shtml
    [10] Borell J, Eriksson K. Improving emergency response capability:an approach for strengthening learning from emergency response evaluations. International Journal of Emergency Management, 2008, 5(3-4):324-337 https://www.researchgate.net/publication/244924903_Improving_Emergency_Response_Capability_An_Approach_for_Strengthening_Learning_from_Emergency_Response_Evaluations
    [11] 苏兆品, 张婷, 张国富, 尤小泉, 蒋建国.基于云模型和模糊聚合的应急方案评估.模式识别与人工智能, 2014, 27(11):1047-1055 http://www.cnki.com.cn/Article/CJFDTOTAL-MSSB201411012.htm

    Su Zhao-Pin, Zhang Ting, Zhang Guo-Fu, You Xiao-Quan, Jiang Jian-Guo. Evaluation of emergency disposal schemes based on cloud model and fuzzy aggregation. Pattern Recognition and Artificial Intelligence, 2014, 27(11):1047-1055 http://www.cnki.com.cn/Article/CJFDTOTAL-MSSB201411012.htm
    [12] Fiedrich F, Gehbauer F, Rickers U. Optimized resource allocation for emergency response after earthquake disasters. Safety Science, 2000, 35(1-3):41-57 doi: 10.1016/S0925-7535(00)00021-7
    [13] Sherali H D, Desai J, Glickman T S. Allocating emergency response resources to minimize risk with equity considerations. American Journal of Mathematical and Management Sciences, 2004, 24(3-4):367-410 doi: 10.1080/01966324.2004.10737638
    [14] Arora H, Raghu T S, Vinze A. Resource allocation for demand surge mitigation during disaster response. Decision Support Systems, 2010, 50(1):304-315 doi: 10.1016/j.dss.2010.08.032
    [15] Zhu J M, Huang J, Liu D G. Equitable resource allocation problem with multiple depots in emergency management. In:Proceedings of the 2010 IEEE International Conference on Emergency Management and Management Sciences. Beijing, China:IEEE, 2010. 37-40 http://ieeexplore.ieee.org/abstract/document/5563509/
    [16] Peng Y J, Hu Z B, Guo X. Research on the evolution law and response capability based on resource allocation model of unconventional emergency. Journal of Computers, 2010, 5(12):1899-1906
    [17] Wang J C, Tepfenhart W, Rosca D. Emergency response workflow resource requirements modeling and analysis. IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews, 2009, 39(3):270-283 doi: 10.1109/TSMCC.2009.2009125
    [18] Wang X P, Li D, Ma C, Chen M. Emergency resource location and allocation under uncertainty of disaster degree. ICIC Express Letters, 2011, 5(2):311-316 https://www.researchgate.net/publication/282630430_Emergency_resource_location_and_allocation_under_uncertainty_of_disaster_degree
    [19] Yang Z S, Zhou H X, Gao X Y, Liu S N. Multiobjective model for emergency resources allocation. Mathematical Problems in Engineering, 2013, 2013:Article ID 538695 http://www.oalib.com/paper/2318638
    [20] Altay N. Capability-based resource allocation for effective disaster response. IMA Journal of Management Mathematics, 2013, 24(2):253-266 doi: 10.1093/imaman/dps001
    [21] Wang D, Qi C, Wang H W. Improving emergency response collaboration and resource allocation by task network mapping and analysis. Safety Science, 2014, 70:9-18 doi: 10.1016/j.ssci.2014.05.005
    [22] Wex F, Schryen G, Feuerriegel S, Neumann D. Emergency response in natural disaster management:allocation and scheduling of rescue units. European Journal of Operational Research, 2014, 235(3):697-708 doi: 10.1016/j.ejor.2013.10.029
    [23] Liu C, Zeng Q T, Duan H, Zhou M C, Lu F M, Cheng J J. E-net modeling and analysis of emergency response processes constrained by resources and uncertain durations. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2015, 45(1):84-96 doi: 10.1109/TSMC.2014.2330555
    [24] 李进, 张江华, 朱道立.灾害链中多资源应急调度模型与算法.系统工程理论与实践, 2011, 31(3):488-495 http://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201103012.htm

    Li Jin, Zhang Jiang-Hua, Zhu Dao-Li. Multi-resource emergency scheduling model and algorithm in disaster chain. Systems Engineering-Theory and Practice, 2011, 31(3):488-495 http://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201103012.htm
    [25] Zhang J H, Li J, Liu Z P. Multiple-resource and multiple-depot emergency response problem considering secondary disasters. Expert Systems with Applications, 2012, 39(12):11066-11071 doi: 10.1016/j.eswa.2012.03.016
    [26] Wang Z Y, Xu W S, Yang J J, Peng J Z. A game theoretic approach for resource allocation based on ant colony optimization in emergency management. In:Proceedings of the 2009 International Conference on Information Engineering and Computer Science. Wuhan, China:IEEE, 2009. 1-4
    [27] 王旭坪, 马超, 阮俊虎.考虑公众心理风险感知的应急物资优化调度.系统工程理论与实践, 2013, 33(7):1735-1742 http://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201307017.htm

    Wang Xu-Ping, Ma Chao, Ruan Jun-Hu. Emergency supplies optimal scheduling considering the publićs psychological risk perception. Systems Engineering-Theory and Practice, 2013, 33(7):1735-1742 http://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201307017.htm
    [28] 王旭坪, 董莉, 陈明天.考虑感知满意度的多受灾点应急资源分配模型.系统管理学报, 2013, 22(2):251-256 http://www.cnki.com.cn/Article/CJFDTOTAL-XTGL201302015.htm

    Wang Xu-Ping, Dong Li, Chen Ming-Tian. Multiple-area post-disaster resource distribution model considering perception satisfaction. Journal of Systems and Management, 2013, 22(2):251-256 http://www.cnki.com.cn/Article/CJFDTOTAL-XTGL201302015.htm
    [29] 王旭坪, 马超, 阮俊虎.运力受限的应急物资动态调度模型及算法.系统工程理论与实践, 2013, 33(6):1492-1500 http://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201306017.htm

    Wang Xu-Ping, Ma Chao, Ruan Jun-Hu. Model and algorithm of relief materials dynamic scheduling without sufficient vehicle quantity. Systems Engineering-Theory and Practice, 2013, 33(6):1492-1500 http://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201306017.htm
    [30] Zhan S L, Liu N, Ye Y. Coordinating efficiency and equity in disaster relief logistics via information updates. International Journal of Systems Science, 2014, 45(8):1607-1621 doi: 10.1080/00207721.2013.777490
    [31] 叶永, 刘南, 詹沙磊.基于信息更新的应急资源配置序贯决策方法.浙江大学学报(工学版), 2013, 47(12):2212-2220 http://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201312022.htm

    Ye Yong, Liu Nan, Zhan Sha-Lei. Information update based sequential approach for emergency resources allocation planning. Journal of Zhejiang University (Engineering Science), 2013, 47(12):2212-2220 http://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201312022.htm
    [32] 张婧, 申世飞, 杨锐.基于偏好序的多事故应急资源调配博弈模型.清华大学学报(自然科学版), 2007, 47(12):2172-2175 http://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200712020.htm

    Zhang Jing, Shen Shi-Fei, Yang Rui. Preference-order-based game modeling of multiple emergency resource allocation. Journal of Tsinghua University (Science and Technology), 2007, 47(12):2172-2175 http://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200712020.htm
    [33] 文仁强, 钟少波, 袁宏永, 黄全义.应急资源多目标优化调度模型与多蚁群优化算法研究.计算机研究与发展, 2013, 50(7):1464-1472 http://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201307013.htm

    Wen Ren-Qiang, Zhong Shao-Bo, Yuan Hong-Yong, Huang Quan-Yi. Emergency resource multi-objective optimization scheduling model and multi-colony ant optimization algorithm. Journal of Computer Research and Development, 2013, 50(7):1464-1472 http://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201307013.htm
    [34] 高淑萍, 刘三阳.基于联系数的多资源应急系统调度问题.系统工程理论与实践, 2004, 23(6):113-115 http://www.cnki.com.cn/Article/CJFDTOTAL-XTLL200306017.htm

    Gao Shu-Ping, Liu San-Yang. Scheduling problem in multi-resource emergency systems based on the connection number. Systems Engineering-Theory and Practice, 2004, 23(6):113-115 http://www.cnki.com.cn/Article/CJFDTOTAL-XTLL200306017.htm
    [35] Chen C, Zhou D Q, Bai Y. Resource emergency dispatching mathematical model under transport capacity constraints. In:Proceedings of the 2009 IEEE International Conference on Grey Systems and Intelligent Services. Nanjing, China:IEEE, 2009. 559-563
    [36] 于辉, 刘洋.应急物资的两阶段局内分配策略.系统工程理论与实践, 2011, 31(3):394-403 http://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201103003.htm

    Yu Hui, Liu Yang. Two-stage online distribution strategy of emergency material. Systems Engineering-Theory and Practice, 2011, 31(3):394-403 http://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201103003.htm
    [37] 田军, 马文正, 汪应洛, 王刊良.应急物资配送动态调度的粒子群算法.系统工程理论与实践, 2011, 31(5):898-906 http://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201105016.htm

    Tian Jun, Ma Wen-Zheng, Wang Ying-Luo, Wang Kan-Liang. Emergency supplies distributing and vehicle routes programming based on particle swarm optimization. Systems Engineering-Theory and Practice, 2011, 31(5):898-906 http://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201105016.htm
    [38] 王新平, 王海燕.多疫区多周期应急物资协同优化调度.系统工程理论与实践, 2012, 32(2):283-291 http://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201202009.htm

    Wang Xin-Ping, Wang Hai-Yan. Optimal multi-period collaborative scheduling of emergency materials for multiple epidemic areas. Systems Engineering-Theory and Practice, 2012, 32(2):283-291 http://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201202009.htm
    [39] Su Z P, Jiang J G, Liang C Y, Zhang G F. A distributed algorithm for parallel multi-task allocation based on profit sharing learning. Acta Automatica Sinica, 2011, 37(7):865-872 doi: 10.1016/S1874-1029(11)60212-7
    [40] Jiang J G, Su Z P, Qi M B, Zhang G F. Multi-task coalition parallel formation strategy based on reinforcement learning. Acta Automatica Sinica, 2008, 34(3):349-352 doi: 10.3724/SP.J.1004.2008.00349
    [41] Srinivas N, Deb K. Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 1994, 2(3):221-248 doi: 10.1162/evco.1994.2.3.221
    [42] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm:NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197 doi: 10.1109/4235.996017
    [43] Beiranvand V, Mobasher-Kashani M, Abu Bakar A. Multi-objective PSO algorithm for mining numerical association rules without a priori discretization. Expert Systems with Applications, 2014, 41(9):4259-4273 doi: 10.1016/j.eswa.2013.12.043
    [44] Ye C J, Huang M X. Multi-objective optimal power flow considering transient stability based on parallel NSGA-II. IEEE Transactions on Power Systems, 2015, 30(2):857-866 doi: 10.1109/TPWRS.2014.2339352
    [45] Li Y H, Lu X M, Kar N C. Rule-based control strategy with novel parameters optimization using NSGA-II for power-split PHEV operation cost minimization. IEEE Transactions on Vehicular Technology, 2014, 63(7):3051-3061 doi: 10.1109/TVT.2014.2316644
    [46] Wang Z, Tang K, Yao X. Multi-objective approaches to optimal testing resource allocation in modular software systems. IEEE Transactions on Reliability, 2010, 59(3):563-575 doi: 10.1109/TR.2010.2057310
    [47] Das S, Suganthan P N. Differential evolution:a survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation, 2011, 15(1):4-31 doi: 10.1109/TEVC.2010.2059031
    [48] Ali M, Siarry P, Pant M. An efficient differential evolution based algorithm for solving multi-objective optimization problems. European Journal of Operational Research, 2012, 217(2):404-416
    [49] Cheng M Y, Tran D H. Two-phase differential evolution for the multiobjective optimization of time-cost tradeoffs in resource-constrained construction projects. IEEE Transactions on Engineering Management, 2014, 61(3):450-461 doi: 10.1109/TEM.2014.2327512
    [50] Vincent L W H, Ponnambalam S G. A differential evolution-based algorithm to schedule flexible assembly lines. IEEE Transactions on Automation Science and Engineering, 2013, 10(4):1161-1165 doi: 10.1109/TASE.2012.2224107
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  2107
  • HTML全文浏览量:  399
  • PDF下载量:  1205
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-22
  • 录用日期:  2016-04-18
  • 刊出日期:  2017-02-01

目录

    /

    返回文章
    返回