Multi-objective Approach to Emergency Resource Allocation Using None-dominated Sorting Based Differential Evolution
-
摘要: 应急资源分配(Emergency resource allocation,ERA)是灾害应急管理中的核心环节,主要研究如何高效合理地把各储备点的应急救援物资分配给各发放点.然而,在大规模突发灾害发生后,每个发放点极可能会同时向多个储备点请求多种救援物资,从而带来潜在的应急资源冲突.为此,本文首先构建了考虑应急资源冲突消解的多储备点、多发放点、多种救援物资的应急资源多目标优化模型,并提出了一种基于非支配排序差异演化和编码修正机制的应急资源多目标分配算法.对比实验结果表明,该算法在大规模样本下能够从全局角度同时给出多个发放点的应急资源分配方案,有效实现多个储备点同时为多个发放点协同配备应急资源,而且不会产生任何应急资源冲突,为解决应急资源受限情况下的大规模应急资源分配问题提供了一个有益的尝试.Abstract: Emergency resource allocation (ERA) is a key topic in emergency management for sudden natural disasters, which mainly deals with how to reasonably and efficiently allocate the emergency relief supplies at reserve points to dispatch points. However, when an extraordinarily serious natural disaster occurs, each dispatch point may ask for many different emergency relief supplies at multiple reserve points at the same time, which will bring potential conflicts over emergency resources. To tackle this problem, a multi-objective optimization model is constructed considering multiple reserve points, multiple dispatch points, multiple emergency resources and emergency resource conflicts resolution. In addition, a multi-objective optimization algorithm for ERA is developed by using none-dominated sorting based differential evolution and encoding repair mechanism. Finally, comparative experimental results from large-scale samples show that our approach can deal with the ERA problem from an overall point of view, simultaneously give the allocation schemes of multiple reserve points for multiple dispatch points, realize different reserve points cooperate with each other on ERA for different dispatch points without any emergency resource conflict, which may provide a useful attempt to solve large-scale ERA problems under limited emergency resources.1) 本文责任编委 赵千川
-
表 1 ERNS-DE算法的参数设置
Table 1 Parameters setting for ERNS-DE
最大迭代次数 种群规模PS 缩放因子F 交叉概率CR 500 30 0.55 0.76 表 2 两种算法在En 1环境中Pareto最优解
Table 2 Pareto solutions obtained by two algorithms in En 1
ERA参数情形 算法 Pareto最优解集(f1, f2) Case 1 ERNS-DE (162, 242), (181, 218), (185, 214), (171, 228), (164, 235), (187, 212),
(169, 230), (173, 226), (154, 252), (180, 219), (189, 210), (175, 224),
(155, 250), (168, 231), (165, 234), (194, 208), (183, 216), (184, 215),
(170, 229), (167, 232), (179, 220), (166, 233), (178, 221), (163, 236),
(186, 213), (176, 223), (172, 227), (182, 217), (157, 247), (177, 222)LPNO-HA (155, 275) Case 2 ERNS-DE (194, 302), (205, 287), (193, 303), (209, 285), (199, 294), (191, 308),
(192, 306), (201, 291), (187, 312), (189, 309), (195, 300)LPNO-HA (196, 303) 表 3 两种算法在En 2环境中Pareto最优解
Table 3 Pareto solutions obtained by two algorithms in En 2
ERA参数情形 算法 Pareto最优解集(f1, f2) Case 1 ERNS-DE (158, 252), (181, 218), (188, 211), (166, 233), (169, 230), (177, 222),
(159, 246), (182, 217), (187, 212), (176, 223), (185, 214), (170, 229),
(180, 219), (165, 235), (173, 226), (163, 239), (164, 237), (172, 227),
(189, 210), (168, 231), (157, 253), (183, 216), (175, 224), (193, 209),
(186, 213), (156, 254), (178, 221), (167, 232), (154, 259), (196, 208)LPNO-HA (155, 283) Case 2 ERNS-DE (203, 274), (205, 271), (199, 276), (189, 289), (187, 293), (183, 313), (196, 278)
(185, 306), (200, 275), (192, 286), (195, 281), (180, 320), (190, 288)LPNO-HA (189, 293) -
[1] Wang Z F. A preliminary report on the great Wenchuan earthquake. Earthquake Engineering and Engineering Vibration, 2008, 7(2):225-234 doi: 10.1007/s11803-008-0856-1 [2] Yuan Y F. Impact of intensity and loss assessment following the great Wenchuan earthquake. Earthquake Engineering and Engineering Vibration, 2008, 7(3):247-254 doi: 10.1007/s11803-008-0893-9 [3] Bilham R. Disaster management:preparing for the worst. Nature, 2013, 502(7472):438-439 https://www.researchgate.net/publication/303241398_Disaster_management_Preparing_for_the_worst [4] Nourbakhsh I, Sargent R, Wright A, Cramer K, McClendon B, Jones M. Mapping disaster zones. Nature, 2006, 439(7078):787-788 doi: 10.1038/439787a [5] Sun B Z, Ma W M, Zhao H Y. A fuzzy rough set approach to emergency material demand prediction over two universes. Applied Mathematical Modelling, 2013, 37(10-11):7062-7070 doi: 10.1016/j.apm.2013.02.008 [6] Başar A, Çatay B, Ünlüyurt T. A taxonomy for emergency service station location problem. Optimization Letters, 2012, 6(6):1147-1160 doi: 10.1007/s11590-011-0376-1 [7] Lee Y M, Ghosh S, Ettl M. Simulating distribution of emergency relief supplies for disaster response operations. In:Proceedings of the 2009 Winter Simulation Conference. Austin, TX, USA:IEEE, 2009. 2797-2808 http://dl.acm.org/citation.cfm?id=1995837 [8] Su Z P, Jiang J G, Liang C Y, Zhang G F. Path selection in disaster response management based on Q-learning. International Journal of Automation and Computing, 2011, 8(1):100-106 doi: 10.1007/s11633-010-0560-2 [9] 孙绪彬, 董海荣, 宁滨, 高童欣, 孔庆杰.基于ACP方法的应急疏散系统研究.自动化学报, 2014, 40(1):16-23 http://www.aas.net.cn/CN/abstract/abstract18262.shtmlSun Xu-Bin, Dong Hai-Rong, Ning Bin, Gao Tong-Xin, Kong Qing-Jie. ACP-based emergency evacuation system. Acta Automatica Sinica, 2014, 40(1):16-23 http://www.aas.net.cn/CN/abstract/abstract18262.shtml [10] Borell J, Eriksson K. Improving emergency response capability:an approach for strengthening learning from emergency response evaluations. International Journal of Emergency Management, 2008, 5(3-4):324-337 https://www.researchgate.net/publication/244924903_Improving_Emergency_Response_Capability_An_Approach_for_Strengthening_Learning_from_Emergency_Response_Evaluations [11] 苏兆品, 张婷, 张国富, 尤小泉, 蒋建国.基于云模型和模糊聚合的应急方案评估.模式识别与人工智能, 2014, 27(11):1047-1055 http://www.cnki.com.cn/Article/CJFDTOTAL-MSSB201411012.htmSu Zhao-Pin, Zhang Ting, Zhang Guo-Fu, You Xiao-Quan, Jiang Jian-Guo. Evaluation of emergency disposal schemes based on cloud model and fuzzy aggregation. Pattern Recognition and Artificial Intelligence, 2014, 27(11):1047-1055 http://www.cnki.com.cn/Article/CJFDTOTAL-MSSB201411012.htm [12] Fiedrich F, Gehbauer F, Rickers U. Optimized resource allocation for emergency response after earthquake disasters. Safety Science, 2000, 35(1-3):41-57 doi: 10.1016/S0925-7535(00)00021-7 [13] Sherali H D, Desai J, Glickman T S. Allocating emergency response resources to minimize risk with equity considerations. American Journal of Mathematical and Management Sciences, 2004, 24(3-4):367-410 doi: 10.1080/01966324.2004.10737638 [14] Arora H, Raghu T S, Vinze A. Resource allocation for demand surge mitigation during disaster response. Decision Support Systems, 2010, 50(1):304-315 doi: 10.1016/j.dss.2010.08.032 [15] Zhu J M, Huang J, Liu D G. Equitable resource allocation problem with multiple depots in emergency management. In:Proceedings of the 2010 IEEE International Conference on Emergency Management and Management Sciences. Beijing, China:IEEE, 2010. 37-40 http://ieeexplore.ieee.org/abstract/document/5563509/ [16] Peng Y J, Hu Z B, Guo X. Research on the evolution law and response capability based on resource allocation model of unconventional emergency. Journal of Computers, 2010, 5(12):1899-1906 [17] Wang J C, Tepfenhart W, Rosca D. Emergency response workflow resource requirements modeling and analysis. IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews, 2009, 39(3):270-283 doi: 10.1109/TSMCC.2009.2009125 [18] Wang X P, Li D, Ma C, Chen M. Emergency resource location and allocation under uncertainty of disaster degree. ICIC Express Letters, 2011, 5(2):311-316 https://www.researchgate.net/publication/282630430_Emergency_resource_location_and_allocation_under_uncertainty_of_disaster_degree [19] Yang Z S, Zhou H X, Gao X Y, Liu S N. Multiobjective model for emergency resources allocation. Mathematical Problems in Engineering, 2013, 2013:Article ID 538695 http://www.oalib.com/paper/2318638 [20] Altay N. Capability-based resource allocation for effective disaster response. IMA Journal of Management Mathematics, 2013, 24(2):253-266 doi: 10.1093/imaman/dps001 [21] Wang D, Qi C, Wang H W. Improving emergency response collaboration and resource allocation by task network mapping and analysis. Safety Science, 2014, 70:9-18 doi: 10.1016/j.ssci.2014.05.005 [22] Wex F, Schryen G, Feuerriegel S, Neumann D. Emergency response in natural disaster management:allocation and scheduling of rescue units. European Journal of Operational Research, 2014, 235(3):697-708 doi: 10.1016/j.ejor.2013.10.029 [23] Liu C, Zeng Q T, Duan H, Zhou M C, Lu F M, Cheng J J. E-net modeling and analysis of emergency response processes constrained by resources and uncertain durations. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2015, 45(1):84-96 doi: 10.1109/TSMC.2014.2330555 [24] 李进, 张江华, 朱道立.灾害链中多资源应急调度模型与算法.系统工程理论与实践, 2011, 31(3):488-495 http://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201103012.htmLi Jin, Zhang Jiang-Hua, Zhu Dao-Li. Multi-resource emergency scheduling model and algorithm in disaster chain. Systems Engineering-Theory and Practice, 2011, 31(3):488-495 http://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201103012.htm [25] Zhang J H, Li J, Liu Z P. Multiple-resource and multiple-depot emergency response problem considering secondary disasters. Expert Systems with Applications, 2012, 39(12):11066-11071 doi: 10.1016/j.eswa.2012.03.016 [26] Wang Z Y, Xu W S, Yang J J, Peng J Z. A game theoretic approach for resource allocation based on ant colony optimization in emergency management. In:Proceedings of the 2009 International Conference on Information Engineering and Computer Science. Wuhan, China:IEEE, 2009. 1-4 [27] 王旭坪, 马超, 阮俊虎.考虑公众心理风险感知的应急物资优化调度.系统工程理论与实践, 2013, 33(7):1735-1742 http://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201307017.htmWang Xu-Ping, Ma Chao, Ruan Jun-Hu. Emergency supplies optimal scheduling considering the publićs psychological risk perception. Systems Engineering-Theory and Practice, 2013, 33(7):1735-1742 http://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201307017.htm [28] 王旭坪, 董莉, 陈明天.考虑感知满意度的多受灾点应急资源分配模型.系统管理学报, 2013, 22(2):251-256 http://www.cnki.com.cn/Article/CJFDTOTAL-XTGL201302015.htmWang Xu-Ping, Dong Li, Chen Ming-Tian. Multiple-area post-disaster resource distribution model considering perception satisfaction. Journal of Systems and Management, 2013, 22(2):251-256 http://www.cnki.com.cn/Article/CJFDTOTAL-XTGL201302015.htm [29] 王旭坪, 马超, 阮俊虎.运力受限的应急物资动态调度模型及算法.系统工程理论与实践, 2013, 33(6):1492-1500 http://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201306017.htmWang Xu-Ping, Ma Chao, Ruan Jun-Hu. Model and algorithm of relief materials dynamic scheduling without sufficient vehicle quantity. Systems Engineering-Theory and Practice, 2013, 33(6):1492-1500 http://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201306017.htm [30] Zhan S L, Liu N, Ye Y. Coordinating efficiency and equity in disaster relief logistics via information updates. International Journal of Systems Science, 2014, 45(8):1607-1621 doi: 10.1080/00207721.2013.777490 [31] 叶永, 刘南, 詹沙磊.基于信息更新的应急资源配置序贯决策方法.浙江大学学报(工学版), 2013, 47(12):2212-2220 http://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201312022.htmYe Yong, Liu Nan, Zhan Sha-Lei. Information update based sequential approach for emergency resources allocation planning. Journal of Zhejiang University (Engineering Science), 2013, 47(12):2212-2220 http://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201312022.htm [32] 张婧, 申世飞, 杨锐.基于偏好序的多事故应急资源调配博弈模型.清华大学学报(自然科学版), 2007, 47(12):2172-2175 http://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200712020.htmZhang Jing, Shen Shi-Fei, Yang Rui. Preference-order-based game modeling of multiple emergency resource allocation. Journal of Tsinghua University (Science and Technology), 2007, 47(12):2172-2175 http://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200712020.htm [33] 文仁强, 钟少波, 袁宏永, 黄全义.应急资源多目标优化调度模型与多蚁群优化算法研究.计算机研究与发展, 2013, 50(7):1464-1472 http://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201307013.htmWen Ren-Qiang, Zhong Shao-Bo, Yuan Hong-Yong, Huang Quan-Yi. Emergency resource multi-objective optimization scheduling model and multi-colony ant optimization algorithm. Journal of Computer Research and Development, 2013, 50(7):1464-1472 http://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201307013.htm [34] 高淑萍, 刘三阳.基于联系数的多资源应急系统调度问题.系统工程理论与实践, 2004, 23(6):113-115 http://www.cnki.com.cn/Article/CJFDTOTAL-XTLL200306017.htmGao Shu-Ping, Liu San-Yang. Scheduling problem in multi-resource emergency systems based on the connection number. Systems Engineering-Theory and Practice, 2004, 23(6):113-115 http://www.cnki.com.cn/Article/CJFDTOTAL-XTLL200306017.htm [35] Chen C, Zhou D Q, Bai Y. Resource emergency dispatching mathematical model under transport capacity constraints. In:Proceedings of the 2009 IEEE International Conference on Grey Systems and Intelligent Services. Nanjing, China:IEEE, 2009. 559-563 [36] 于辉, 刘洋.应急物资的两阶段局内分配策略.系统工程理论与实践, 2011, 31(3):394-403 http://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201103003.htmYu Hui, Liu Yang. Two-stage online distribution strategy of emergency material. Systems Engineering-Theory and Practice, 2011, 31(3):394-403 http://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201103003.htm [37] 田军, 马文正, 汪应洛, 王刊良.应急物资配送动态调度的粒子群算法.系统工程理论与实践, 2011, 31(5):898-906 http://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201105016.htmTian Jun, Ma Wen-Zheng, Wang Ying-Luo, Wang Kan-Liang. Emergency supplies distributing and vehicle routes programming based on particle swarm optimization. Systems Engineering-Theory and Practice, 2011, 31(5):898-906 http://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201105016.htm [38] 王新平, 王海燕.多疫区多周期应急物资协同优化调度.系统工程理论与实践, 2012, 32(2):283-291 http://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201202009.htmWang Xin-Ping, Wang Hai-Yan. Optimal multi-period collaborative scheduling of emergency materials for multiple epidemic areas. Systems Engineering-Theory and Practice, 2012, 32(2):283-291 http://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201202009.htm [39] Su Z P, Jiang J G, Liang C Y, Zhang G F. A distributed algorithm for parallel multi-task allocation based on profit sharing learning. Acta Automatica Sinica, 2011, 37(7):865-872 doi: 10.1016/S1874-1029(11)60212-7 [40] Jiang J G, Su Z P, Qi M B, Zhang G F. Multi-task coalition parallel formation strategy based on reinforcement learning. Acta Automatica Sinica, 2008, 34(3):349-352 doi: 10.3724/SP.J.1004.2008.00349 [41] Srinivas N, Deb K. Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 1994, 2(3):221-248 doi: 10.1162/evco.1994.2.3.221 [42] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm:NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197 doi: 10.1109/4235.996017 [43] Beiranvand V, Mobasher-Kashani M, Abu Bakar A. Multi-objective PSO algorithm for mining numerical association rules without a priori discretization. Expert Systems with Applications, 2014, 41(9):4259-4273 doi: 10.1016/j.eswa.2013.12.043 [44] Ye C J, Huang M X. Multi-objective optimal power flow considering transient stability based on parallel NSGA-II. IEEE Transactions on Power Systems, 2015, 30(2):857-866 doi: 10.1109/TPWRS.2014.2339352 [45] Li Y H, Lu X M, Kar N C. Rule-based control strategy with novel parameters optimization using NSGA-II for power-split PHEV operation cost minimization. IEEE Transactions on Vehicular Technology, 2014, 63(7):3051-3061 doi: 10.1109/TVT.2014.2316644 [46] Wang Z, Tang K, Yao X. Multi-objective approaches to optimal testing resource allocation in modular software systems. IEEE Transactions on Reliability, 2010, 59(3):563-575 doi: 10.1109/TR.2010.2057310 [47] Das S, Suganthan P N. Differential evolution:a survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation, 2011, 15(1):4-31 doi: 10.1109/TEVC.2010.2059031 [48] Ali M, Siarry P, Pant M. An efficient differential evolution based algorithm for solving multi-objective optimization problems. European Journal of Operational Research, 2012, 217(2):404-416 [49] Cheng M Y, Tran D H. Two-phase differential evolution for the multiobjective optimization of time-cost tradeoffs in resource-constrained construction projects. IEEE Transactions on Engineering Management, 2014, 61(3):450-461 doi: 10.1109/TEM.2014.2327512 [50] Vincent L W H, Ponnambalam S G. A differential evolution-based algorithm to schedule flexible assembly lines. IEEE Transactions on Automation Science and Engineering, 2013, 10(4):1161-1165 doi: 10.1109/TASE.2012.2224107