-
摘要: 现有的复制-粘贴盲鉴别算法大多忽略图像彩色信息,导致对隐蔽性篡改方式的检测率较低,基于此,本文提出一种基于彩色局部二值模式(Color local binary patterns,CoLBP)的隐蔽性复制-粘贴盲鉴别算法.算法首先对彩色图像进行预处理,即建立彩色LBP纹理图像,从而实现彩色信息与LBP纹理特征的融合;其次重叠分块并提取灰度共生矩阵(Gray level co-occurrence matrix,GLCM)特征;最后,提出改进的kd树和超平面划分标记split搜索方法,快速匹配图像块,并应用形态学操作去除误匹配,精确定位复制-粘贴区域.实验结果表明,本算法对隐蔽性复制-粘贴篡改定位准确,并对模糊、噪声、JPEG重压缩后处理操作有很好的鲁棒性.Abstract: Since negligence of color information in detecting copy-move forgeries leads to low accuracy in detection of in covert tampering, a novel method using color local binary patterns (CoLBP) is proposed. It involves the following three steps: first, establish color LBP texture image, which is a preprocessing of image and a combination of color information and LBP texture; second, divide into overlapping blocks and extract gray level co-occurrence matrix (GLCM) features; finally, match image blocks by the improved kd tree and split partition, remove the false matched blocks using morphological operation and then detect the resulting copy-move regions. Experimental results show that our algorithm is effective for covert tampering, and exhibits high robustness even when an image is distorted by blur, noise and JPEG recompression.
-
-
图 8 隐蔽性复制-粘贴篡改检测结果示例 ((a), (g) 隐蔽性复制-粘贴篡改图像; (b), (h) 彩色LBP图像; (c), (i) DCT[4]算法检测结果; (d), (j) Zernike[14]算法检测结果; (e), (k) LBP[17]算法检测结果; (f), (l) 本文算法检测结果.其中, (a), (g) 实线和虚线框分别表示复制和粘贴区域; (c)~(f), (i)~(l) 标记区域为算法检测篡改区域)
Fig. 8 The exemplar results on covert copy-move forgery detection ((a), (g) Covert copy-move forged images; (b), (h) Color LBP images; (c), (i) The results based on DCT[4]; (d), (j) The results based on Zernike[14]; (e), (k) The results based on LBP[17]; (f), (l) The results based on our method. Where (a), (g) solid and dashed rectangles are copied and pasted regions; (c)~(f), (i)~(l) marked regions are detected forged regions.)
图 9 造成假象类复制-粘贴篡改检测结果示例 ((a), (g) 造成假象类复制-粘贴篡改图像; (b), (h) 彩色LBP图像; (c), (i) DCT[4]算法检测结果; (d), (j) Zernike[14]算法检测结果; (e), (k) LBP[17]算法检测结果; (f), (l) 本文算法检测结果.其中, (a), (g) 实线和虚线框分别表示复制和粘贴区域; (c)~(f), (i)~(l) 标记区域为算法检测篡改区域)
Fig. 9 The exemplar results on spurious copy-move forgery detection ((a), (g) Spurious copy-move forged images; (b), (h) Color LBP images; (c), (i) The results based on DCT[4]; (d), (j) The results based on Zernike[14]; (e), (k) The results based on LBP[17]; (f), (l) The results based on our method. Where (a), (g) solid and dashed rectangles are copied and pasted regions; (c)~(f) marked regions are detected forged regions; (i)~(l) green regions are detected forged regions.)
表 1 彩色空间选择分析
Table 1 The analysis on color space choice
彩色空间 彩色LBP图像提取时间 (s) TPR (%) FPR (%) RGB 4 95 9 LAB 5 94 11 HSV 5.5 95 10 表 2 灰度级别gth选择
Table 2 The choice of gray level gth
灰度级别$g_{th}$ 特征维度 TPR (%) FPR (%) 4 16 85 15 8 64 91 13 16 256 95 7 32 024 95 6 -
[1] Fridrich A J, Soukal B D, Lukáš A J. Detection of copy-move forgery in digital images. In: Proceedings of the 2003 Digital Forensic Research Workshop. Cleveland, USA, 2003. [2] Wang X, Zhang X, Li Z, Wang S. A DWT-DCT based passive forensics method for copy-move attacks. In: Proceedings of the 3rd International Conference on Multimedia Information Networking and Security. Shanghai, China: IEEE, 2011. 304-308 [3] Hu J, Zhang H, Gao Q, Huang H. An improved lexicographical sort algorithm of copy-move forgery detection. In: Proceedings of the 2nd International Conference on Networking and Distributed Computing. Beijing, China: IEEE, 2011. 23-27 [4] Cao Y J, Gao T G, Li F, Yang Q T. A robust detection algorithm for copy-move forgery in digital images. Forensic Science International, 2012, 214(1-3): 33-43 doi: 10.1016/j.forsciint.2011.07.015 [5] Popescu A C, Farid H. Exposing Digital Forgeries by Detecting Duplicated Image Regions, Technical Report 2004-515, Dartmouth College, USA, 2004. [6] 骆伟祺, 黄继武, 丘国平.鲁棒的区域复制图像篡改检测技术.计算机学报, 2007, 30(11): 1998-2007 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJX200711013.htmLuo Wei-Qi, Huang Ji-Wu, Qiu Guo-Ping. Robust detection of region-duplication forgery in digital image. Chinese Journal of Computers, 2007, 30(11): 1998-2007 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJX200711013.htm [7] Muhammad G, Hussain M, Bebis G. Passive copy move image forgery detection using undecimated dyadic wavelet transform. Digital Investigation, 2012, 9(1): 49-57 doi: 10.1016/j.diin.2012.04.004 [8] Bayram S, Sencar H T, Memon N. An efficient and robust method for detecting copy-move forgery. In: Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. Taipei, China: IEEE, 2009. 1053-1056 [9] Zhong J L, Gan Y F. Detection of copy-move forgery using discrete analytical Fourier-Mellin transform. Nonlinear Dynamics, 2016, 84(1): 189-202 doi: 10.1007/s11071-015-2374-9 [10] Zhang T, Wang R. Copy-move forgery detection based on SVD in digital image. In: Proceedings of the 2nd International Congress on Image and Signal Processing. Tianjin, China: IEEE, 2009. 1-5 [11] Liu G J, Wang J W, Lian S G, Wang Z Q. A passive image authentication scheme for detecting region-duplication forgery with rotation. Journal of Network and Computer Applications, 2011, 34(5): 1557-1565 doi: 10.1016/j.jnca.2010.09.001 [12] Mahdian B, Saic S. Detection of copy-move forgery using a method based on blur moment invariants. Forensic Science International, 2007, 171(2-3): 180-189 doi: 10.1016/j.forsciint.2006.11.002 [13] Ryu S J, Lee M J, Lee H K. Detection of copy-rotate-move forgery using Zernike moments. In: Proceedings of the 12th International Conference on Information Hiding. Calgary, AB, Canada: Springer, 2010. 51-65 [14] Ryu S J, Kirchner M, Lee M J, Lee H K. Rotation invariant localization of duplicated image regions based on Zernike moments. IEEE Transactions on Information Forensics and Security, 2013, 8(8): 1355-1370 doi: 10.1109/TIFS.2013.2272377 [15] Li L D, Li S S, Zhu H C, Wu X Y. Detecting copy-move forgery under affine transforms for image forensics. Computers and Electrical Engineering, 2014, 40(6): 1951-1962 doi: 10.1016/j.compeleceng.2013.11.034 [16] Lynch G, Shih F Y, Liao H Y M. An efficient expanding block algorithm for image copy-move forgery detection. Information Sciences, 2013, 239: 253-265 doi: 10.1016/j.ins.2013.03.028 [17] Davarzani R, Yaghmaie K, Mozaffari S, Tapak M. Copy-move forgery detection using multiresolution local binary patterns. Forensic Science International, 2013, 231(1-3): 61-72 doi: 10.1016/j.forsciint.2013.04.023 [18] Cozzolino D, Poggi G, Verdoliva L. Efficient dense-field copy-move forgery detection. IEEE Transactions on Information Forensics and Security, 2015, 10(11): 2284-2297 doi: 10.1109/TIFS.2015.2455334 [19] Porebski A, Vandenbroucke N, Macaire L. Haralick feature extraction from LBP images for color texture classification. In: Proceedings of the 1st Workshops on Image Processing Theory, Tools and Applications. Sousse: IEEE, 2008. 1-8 [20] Haralick R M. Statistical and structural approaches to texture. Proceedings of the IEEE, 1979, 67(5): 786-804 doi: 10.1109/PROC.1979.11328 [21] Amerini I, Ballan L, Caldelli R, Del Bimbo A, Serra G. A SIFT-based forensic method for copy-move attack detection and transformation recovery. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 1099-1110 doi: 10.1109/TIFS.2011.2129512 [22] Kakar P, Sudha N. Exposing post processed copy-paste forgeries through transform-invariant features. IEEE Transactions on Information Forensics and Security, 2012, 7(3): 1018-1028 doi: 10.1109/TIFS.2012.2188390 期刊类型引用(15)
1. 耿艳利,刘松岳,王希瑞,宣伯凯. 电动下肢假肢多路况控制策略研究. 中国康复医学杂志. 2024(02): 226-231 . 百度学术
2. 汪晓铭,黎林荣,陈长龙,孙洁,张哲文,孟巧玲,喻洪流. 人-机-环境共融的智能假肢膝关节研究进展. 中国生物医学工程学报. 2023(04): 486-501 . 百度学术
3. 韩亚丽,韩子,金壮壮,徐闽海,吴应达. 一种主动型踝关节助力外骨骼设计及性能实验. 仪器仪表学报. 2023(11): 109-118 . 百度学术
4. 刘克平,滕召纬,孙中波,李婉婷. 基于自适应模糊神经网络的下肢关节角度估计. 计算机仿真. 2022(09): 456-461 . 百度学术
5. 盛敏,唐少波. 融合统计和几何特征的运动意图识别方法. 安庆师范大学学报(自然科学版). 2021(01): 34-39 . 百度学术
6. 刘作军,许长寿,陈玲玲,张燕. 智能假肢膝关节的研发要点及其研究进展综述. 包装工程. 2021(10): 54-63 . 百度学术
7. 崔建伟,李志钢,曹尔凡,杜韩,陆普东. 基于人体上肢运动信息的助残手抓取意图识别方法. 中国惯性技术学报. 2021(02): 250-255 . 百度学术
8. 刘磊,杨鹏,刘作军,宋寅卯. 基于多核学习极限学习机的助行机器人运动相容性识别. 高技术通讯. 2021(09): 978-985 . 百度学术
9. 苏本跃,倪钰,盛敏,赵丽丽. 基于改进卷积神经网络的动力下肢假肢运动意图识别. 控制与决策. 2021(12): 3031-3038 . 百度学术
10. 黄品高,黄剑平,黄博俊,方鹏,刘志远,李光林. 实现下肢假肢智能仿生控制的神经功能重建及行走意图识别方法. 中国科学基金. 2021(S1): 227-235 . 百度学术
11. 滕召纬,孙中波,刘克平. 基于自适应模糊神经网络的下肢关节运动意图估计. 长春工业大学学报. 2020(06): 558-562 . 百度学术
12. 盛敏,刘双庆,王婕,苏本跃. 基于GMM-HMM模型的智能下肢假肢运动意图识别. 仪器仪表学报. 2019(05): 169-178 . 百度学术
13. 刘双庆. 基于LSTM深度学习模型的智能下肢假肢运动意图识别. 合肥学院学报(综合版). 2019(05): 96-104 . 百度学术
14. 杨帆,王远,郭鹏程. 针对下肢残障人士的无障碍卫浴产品设计分析. 工业设计. 2019(11): 48-49 . 百度学术
15. 刘磊,陈增强,杨鹏,刘作军. 采用鱼群算法进化极限学习机的假肢步态识别. 振动.测试与诊断. 2019(06): 1225-1231+1360-1361 . 百度学术
其他类型引用(22)
-