2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无监督的猕猴运动皮层锋电位信号CKF解码

薛明龙 吴海锋 曾玉

薛明龙, 吴海锋, 曾玉. 无监督的猕猴运动皮层锋电位信号CKF解码. 自动化学报, 2017, 43(2): 302-312. doi: 10.16383/j.aas.2017.c160065
引用本文: 薛明龙, 吴海锋, 曾玉. 无监督的猕猴运动皮层锋电位信号CKF解码. 自动化学报, 2017, 43(2): 302-312. doi: 10.16383/j.aas.2017.c160065
XUE Ming-Long, WU Hai-Feng, ZENG Yu. Unsupervised CKF Decoding for Macaque Motor Cortical Spikes. ACTA AUTOMATICA SINICA, 2017, 43(2): 302-312. doi: 10.16383/j.aas.2017.c160065
Citation: XUE Ming-Long, WU Hai-Feng, ZENG Yu. Unsupervised CKF Decoding for Macaque Motor Cortical Spikes. ACTA AUTOMATICA SINICA, 2017, 43(2): 302-312. doi: 10.16383/j.aas.2017.c160065

无监督的猕猴运动皮层锋电位信号CKF解码

doi: 10.16383/j.aas.2017.c160065
基金项目: 

云南省第17批中青年学术和技术带头人资助项目 2014HB019

云南省教育厅科学基金重点项目 2014Z093

国家自然科学基金 61262091

云南民族大学研究生创新基金项目 2016YJCXS03

详细信息
    作者简介:

    薛明龙云南民族大学电气信息工程学院硕士研究生.主要研究方向为机器学习和神经网络.E-mail:xmlxy123@foxmail.com

    曾玉云南民族大学讲师.主要研究方向为射频识别技术.E-mail:yv.zeng@gmail.com

    通讯作者:

    吴海锋云南民族大学教授.主要研究方向为射频识别技术.本文通信作者.E-mail:whf5469@gmail.com

Unsupervised CKF Decoding for Macaque Motor Cortical Spikes

Funds: 

the 17th Batches of Young and Middle-aged Leaders in Academic and Technical Reserved Talents Project of Yunnan Province 2014HB019

the Project of Scientific Research Foundation of Yunnan Provincial Department of Education 2014Z093

National Natural Science Foundation of China 61262091

the Project of Postgraduate Innovation Foundation of Yunnan Minzu University 2016YJCXS03

More Information
    Author Bio:

    Master student at the School of Electrical and Information Technology, Yunnan Minzu University. His research interest covers machine learning and neural network

    Lecturer at Yunnan Minzu University. Her main research interest is radio frequency identification (RFID) technology

    Corresponding author: WU Hai-Feng Professor at Yunnan Minzu University. His main research interest is radio frequency identification (RFID) technology. Corresponding author of this paper
  • 摘要: 如何通过猕猴运动皮层的神经元锋电位信号估计其手指移动位置是一神经解码问题,现存方法解决该问题大多采用有监督训练,需要通过训练数据得到神经元锋电位信号与手指移动位置的关系,因此其估计性能依赖于训练数据.本文提出了一种无监督解码方法,该方法基于状态空间模型(State space model,SSM),利用神经网络得到神经元锋电位数与手指移动位置的关系权值,再用逐次状态估计方法去估计手指移动的位置.为减少训练的复杂度和提高估计准确度,采用一种非线性的积分卡尔曼滤波(Cubature Kalman filtering,CKF)来完成神经网络的训练和手指位置的逐次状态估计.与传统方法相比,该方法的最大特点是无监督,可以由神经元锋电位簇向量直接估计手指移动位置,而无需有监督训练.实验结果显示,当采用较少的有监督数据,现存方法与本文方法相比有较大的估计误差;当采用较多的有监督数据,现存方法才具有与本文方法相近似的估计误差.
    1)  本文责任编委 田捷
  • 图  1  猕猴手指移动轨迹图

    Fig.  1  An example for the trajectory of a macaque's finger

    图  2  相邻两时刻纵坐标间差值${\Delta y}$的分布概率图

    Fig.  2  An example for the distribution of ${\Delta y}$

    图  3  相邻两时刻纵坐标间差值${\Delta s}$的分布概率图

    Fig.  3  An example for the distribution of ${\Delta s}$

    图  4  权值训练神经网络信号流

    Fig.  4  Weight training neural network signals flow

    图  5  位置估计与权值训练

    Fig.  5  Position estimation and weight training

    图  6  线性拟合位置估计与手指移动实际位置曲线对比

    Fig.  6  Linear fitting position estimation compared with fingers moving curve of actual position

    图  7  KF位置估计与手指移动实际位置曲线对比

    Fig.  7  KF algorithm position estimation compared with fingers moving curve of actual position

    图  8  UCKD位置估计与手指移动实际位置曲线对比

    Fig.  8  UCKD algorithm position estimation compared with fingers moving curve of actual position

    图  9  UCKD训练次数RMSE变化图

    Fig.  9  UCKD's RMSE correlated with the number of training

    图  10  UCKD算法随数据长度变化的位置估计RMSE曲线图

    Fig.  10  UCKD algorithm with data length change of position estimation RMSE curve

    图  11  三种方法的RMSE变化图

    Fig.  11  Three algorithm of RMSE variation

    表  1  5次训练的RMSE (cm)

    Table  1  Five times the RMSE of training (cm)

    训练次数 第1组 第2组 第3组 第4组 第5组 均值 方差
    1 3.835 4.098 4.470 3.480 4.165 4.010 0.139
    2 3.207 4.154 4.293 3.045 3.708 3.681 0.307
    3 2.658 4.009 3.434 2.485 2.812 3.080 0.398
    4 2.203 3.144 2.493 2.277 2.248 2.473 0.153
    5 2.151 2.528 2.219 2.218 2.113 2.246 0.027
    6 2.144 2.347 2.173 2.194 2.080 2.188 0.010
    7 2.147 2.328 2.163 2.182 2.073 2.179 0.009
    8 2.153 2.342 2.158 2.178 2.065 2.179 0.010
    9 2.160 2.365 2.155 2.177 2.060 2.171 0.007
    10 2.166 2.389 2.153 2.179 2.058 2.170 0.007
    下载: 导出CSV
  • [1] Wallisch P, Lusignan M E, Benayoun M D, Baker T I, Dickey A S, Hatsopoulos N G. MATLAB For Neuroscientists (2nd edition). London:Elsevier, 2014.
    [2] Gabbiani F, Cox S J. Mathematics for Neuroscientists. London:Elsevier, 2010.
    [3] Kass R E, Eden U T, Brown E N. Analysis of Neural Data. New York:Springer, 2014.
    [4] Hatsopoulos N G, Ojakangas C L, Paninski L, Donoghue J P. Information about movement direction obtained from synchronous activity of motor cortical neurons. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(26):15706-15711 doi: 10.1073/pnas.95.26.15706
    [5] Hatsopoulos N G, Xu Q Q, Amit Y. Encoding of movement fragments in the motor cortex. The Journal of Neuroscience, 2007, 27(19):5105-5114 doi: 10.1523/JNEUROSCI.3570-06.2007
    [6] Moran D W, Schwartz A B. Motor cortical representation of speed and direction during reaching. Journal of Neurophysiology, 1999, 82(5):2676-2692 https://www.researchgate.net/publication/12740618_Motor_cortical_representation_of_speed_and_direction_during_reaching
    [7] Reynaud-Bouret P, Rivoirard V, Grammont F, Tuleau-Malot C. Goodness-of-fit tests and nonparametric adaptive estimation for spike train analysis. Journal of Mathematical Neuroscience, 2014, 4(1):1-41 doi: 10.1186/2190-8567-4-1
    [8] Georgopoulos A P, Kettner R E, Schwartz A B. Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population. The Journal of Neuroscience, 1988, 8(8):2928-2937
    [9] Brockwell A E, Rojas A L, Kass R E. Recursive Bayesian decoding of motor cortical signals by particle filtering. Journal of Neurophysiology, 2004, 91(4):1899-1907 doi: 10.1152/jn.00438.2003
    [10] Brockwell A E, Kass R E, Schwartz A B. Statistical signal processing and the motor cortex. Proceedings of the IEEE, 2007, 95(5):881-898 doi: 10.1109/JPROC.2007.894703
    [11] Wu W, Shaikhouni A, Donoghue J P, Black M J. Closed-loop neural control of cursor motion using a Kalman filter. In:Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Francisco, CA:IEEE, 2004. 4126-4129
    [12] Wu W, Gao Y, Bienenstock E, Donoghue, J P, Black M J. Bayesian population decoding of motor cortical activity using a Kalman filter. Neural Computation, 2006, 18(1):80-118 doi: 10.1162/089976606774841585
    [13] Ebitz R B, Platt M L. Neuronal activity in primate dorsal anterior cingulate cortex signals task conflict and predicts adjustments in pupil-linked arousal. Neuron, 2015, 85(3):628-640 doi: 10.1016/j.neuron.2014.12.053
    [14] Wang W, Sudre G P, Xu Y, Kass R E, Collinger J L, Degenhart A D, Bagic A I, Weber D J. Decoding and cortical source localization for intended movement direction with MEG. Journal of Neurophysiology, 2010, 104(5):2451-2461 doi: 10.1152/jn.00239.2010
    [15] Campbell J, Sharma A. Visual cross-modal re-organization in children with cochlear implants. PLoS One, 2016, 11(1):e0147793 doi: 10.1371/journal.pone.0147793
    [16] Hochberg L R, Serruya M D, Friehs G M, Mukand J A, Saleh M, Caplan A H, Branner A, Chen D, Penn R D, Donoghue J P. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature, 2006, 442(7099):164-171 doi: 10.1038/nature04970
    [17] Serruya M D, Hatsopoulos N G, Paninski L, Fellows M R, Donoghue J P. Instant neural control of a movement signal. Nature, 2002, 416(6877):141-142 doi: 10.1038/416141a
    [18] Warland D K, Reinagel P, Meister M. Decoding visual information from a population of retinal ganglion cells. Journal of Neurophysiology, 1997, 78(5):2336-2350 https://www.researchgate.net/publication/2600215_Decoding_Visual_Information_From_a_Population_of_Retinal_Ganglion_Cells
    [19] Czanner G, Eden U T, Wirth S, Yanike M, Suzuki W A, Brown E N. Analysis of between-trial and within-trial neural spiking dynamics. Journal of Neurophysiology, 2008, 99(5):2672-2693 doi: 10.1152/jn.00343.2007
    [20] Malik W Q, Hochberg L R, Donoghue J P, Brown E N. Modulation depth estimation and variable selection in state-space models for neural interfaces. IEEE Transactions on Biomedical Engineering, 2015, 62(2):570-581 doi: 10.1109/TBME.2014.2360393
    [21] Brown E N, Frank L M, Tang D D, Quirk M C, Wilson M A. A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. The Journal of Neuroscience, 1998, 18(18):7411-7425 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.111.7351
    [22] Shanechi M M, Wornell G W, Williams Z M, Brown E N. Feedback-controlled parallel point process filter for estimation of goal-directed movements from neural signals. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21(1):129-140 doi: 10.1109/TNSRE.2012.2221743
    [23] Sanger T D. Neural population codes. Current Opinion in Neurobiology, 2003, 13(2):238-249 doi: 10.1016/S0959-4388(03)00034-5
    [24] Zhang K C, Sejnowski T J. Accuracy and learning in neuronal populations. Progress in Brain Research, 2001, 130:333-342 doi: 10.1016/S0079-6123(01)30022-5
    [25] Haykin S O. Neural Networks and Learning Machines (3rd edition). New Jersey:Pearson Education, Inc., 2009.
    [26] Arasaratnam I, Haykin S. Cubature Kalman filters. IEEE Transactions on Automatic Control, 2009, 54(6):1254-1269 doi: 10.1109/TAC.2009.2019800
    [27] Friedman N. The Bayesian structural EM algorithm. In:Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA, USA:Morgan Kaufmann Publishers Inc., 1998. 129-138
    [28] Chou Y L. Statistical Analysis. Holt International, 1975.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  2247
  • HTML全文浏览量:  232
  • PDF下载量:  582
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-21
  • 录用日期:  2016-05-31
  • 刊出日期:  2017-02-01

目录

    /

    返回文章
    返回