2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁偶极子跟踪的渐进贝叶斯滤波方法

张宏欣 周穗华 张伽伟

张宏欣, 周穗华, 张伽伟. 磁偶极子跟踪的渐进贝叶斯滤波方法. 自动化学报, 2017, 43(5): 822-834. doi: 10.16383/j.aas.2017.c160052
引用本文: 张宏欣, 周穗华, 张伽伟. 磁偶极子跟踪的渐进贝叶斯滤波方法. 自动化学报, 2017, 43(5): 822-834. doi: 10.16383/j.aas.2017.c160052
ZHANG Hong-Xin, ZHOU Sui-Hua, ZHANG Jia-Wei. A Progressive Bayesian Filtering Approach to Magnetic. ACTA AUTOMATICA SINICA, 2017, 43(5): 822-834. doi: 10.16383/j.aas.2017.c160052
Citation: ZHANG Hong-Xin, ZHOU Sui-Hua, ZHANG Jia-Wei. A Progressive Bayesian Filtering Approach to Magnetic. ACTA AUTOMATICA SINICA, 2017, 43(5): 822-834. doi: 10.16383/j.aas.2017.c160052

磁偶极子跟踪的渐进贝叶斯滤波方法

doi: 10.16383/j.aas.2017.c160052
基金项目: 

国家自然科学基金 51509252

详细信息
    作者简介:

    张宏欣  海军工程大学兵器工程系博士研究生. 2010年获得西安理工大学信息与控制系学士学位.主要研究方向为非线性估计和滤波, 及其目标跟踪应用. E-mail:mylifeforthebattle@hotmail.com

    张伽伟  海军工程大学兵器工程系讲师. 2013年获得海军工程大学博士学位.主要研究方向为军用目标信息处理, 舰船物理场. E-mail: gaweizhang@163.com

    通讯作者:

    周穗华  海军工程大学兵器工程系教授. 1990年获得海军工程学院博士学位.主要研究方向为军用目标信息处理, 武器系统总体设计. E-mail: zzs_rice@163.com

A Progressive Bayesian Filtering Approach to Magnetic

Funds: 

National Natural Science Foundation of China 51509252

More Information
    Author Bio:

     Ph.D. candidate in the Department of Weaponry Engineering, Naval University of Engineering. He received his bachelor degree from Xi'an University of Technology in 2010. His research interest covers nonlinear estimation and filtering, especially their applications on target tracking

     Lecturer in the Department of Weaponry Engineering, Naval University of Engineering. He received his Ph.D. degree from Naval Institute of Engineering in 2013. His research interest covers military target signal processing, physical field of vessel

    Corresponding author: ZHOU Sui-Hua  rofessor in the Department of Weaponry Engineering, Naval University of Engineering. He received his Ph.D. degree from Naval Institute of Engineering in 1990. His research interest covers military target signal processing and integrated design of weapon system. Corresponding author of this paper
  • 摘要: 提出一种新的非线性滤波器应用于磁偶极子目标跟踪问题.建立了跟踪问题的状态空间模型, 在此基础上, 从高斯矩近似误差的角度分析了现有卡尔曼滤波更新在磁偶极子跟踪中的问题.对此, 将贝叶斯更新过程等效为求解连续时间上的渐进贝叶斯问题, 在线性高斯条件下推导了其解析解, 表明渐进贝叶斯更新可等效为定常系统的Kalman-Bucy滤波器; 进一步采用一阶Taylor展开得到非线性近似解表达式, 导出一种渐进贝叶斯滤波器, 从理论上分析了与现有方法的异同.仿真与实测磁目标跟踪试验结果表明, 渐进贝叶斯滤波器具有良好的精度和收敛性, 能够有效抑制磁目标跟踪中由于大初始误差导致的性能下降和滤波发散, 且计算效率与扩展卡尔曼滤波器相当, 适于实际应用.
  • 图  1  不同初始误差条件下先验观测矩近似结果

    Fig.  1  Prior moment approximation under different initial error covariance

    图  2  位置分量与磁矩分量估计RMSE(ψ=π/3)

    Fig.  2  RMSE of position and magnetic moment estimation(ψ=π/3)

    图  3  位置分量与磁矩分量估计RMSE(ψ=π/8)

    Fig.  3  RMSE of position and magnetic moment estimation(ψ=π/8)

    图  4  位置分量与磁矩分量估计RMSE(ψ=π/16)

    Fig.  4  RMSE of position and magnetic moment estimation(ψ=π/16)

    图  5  总均方误差vs.渐进(迭代)次数

    Fig.  5  TRMSE vs. progressive (recursive) steps

    图  6  各算法执行时间随渐进(迭代)次数增长

    Fig.  6  quad Running time vs. progressive (recursive) steps

    图  7  PBF随ϵ变化的总均方误差

    Fig.  7  TRMSE of PBF vs. variation of ϵ

    图  8  三轴磁强计

    Fig.  8  Magnetometer

    图  9  磁体目标

    Fig.  9  Magnet target

    图  10  参考坐标系

    Fig.  10  Reference coordinate

    图  11  参考轨迹

    Fig.  11  Reference trajectory

    图  12  实测跟踪试验结果

    Fig.  12  Experimental results of target tracking

    表  1  仿真场景参数

    Table  1  Parameter of simulation scenario

    参数(单位) 量值
    r0(m) [-150, -150, 50]T
    v0(m/s) [8, 8, 0.6]T
    M0(A·m2) 10^6·[6.0, -9.0, 9.0]T
    V(m3) 103
    o1, 2(m) [-60, ±6, 10]T
    TN, Ts(s) 60, 0.5
    下载: 导出CSV

    表  2  滤波初始条件

    Table  2  Filter initialization

    参数初值(${{{\mathit{\boldsymbol{\hat{x}}}}}_{0}}$) 初始均方误差(P0)
    ${{{\mathit{\boldsymbol{\hat{r}}}}}_{0}}$ R(ψn)·[-160, -160, { 40}]T ${{I}_{3\times 3}}{{{\mathit{\boldsymbol{\tilde{r}}}}}_{0}}{{I}_{3\times 3}}{{{\mathit{\boldsymbol{\tilde{r}}}}}_{0}}$
    ${{{\mathit{\boldsymbol{\hat{v}}}}}_{0}}$ [5, 5, 0.2]T diag{22, 22, 22}
    ${{{\mathit{\boldsymbol{\hat{M}}}}}_{0}}$ [0, 0, 0]T diag{1013, 1013, 1013}
    ${\hat{V}}$ 0 2·103
    下载: 导出CSV

    表  3  归一化后验残差平方和

    Table  3  Normalized posterior residual square

    r*
    试验1 试验2
    RU-EKF 1.913×105 7.908×105
    RU-CKF 2.286×105 1.363×106
    PEKF 1.891×105 2.142×105
    PUKF 2.076×105 8.071×107
    PCKF 2.188×106 2.424×109
    PBF 1.746×105 1.703×105
    下载: 导出CSV
  • [1] McAulay A. Computerized model demonstrating magnetic submarine localization. IEEE Transactions on Aerospace and Electronic Systems, 1977, AES-13(3): 246-254 doi: 10.1109/TAES.1977.308392
    [2] McFee J E, Das Y, Ellingson R O. Locating and identifying compact ferrous objects. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(2): 182-193 doi: 10.1109/36.46697
    [3] Pham D M, Aziz S M. A real-time localization system for an endoscopic capsule using magnetic sensors. Sensors, 2014, 14(11): 20910-20929 doi: 10.3390/s141120910
    [4] Birsan M. Recursive Bayesian method for magnetic dipole tracking with a tensor gradiometer. IEEE Transactions on Magnetics, 2011, 47(2): 409-415 doi: 10.1109/TMAG.2010.2091964
    [5] Wahlström N. Target Tracking Using Maxwell0s Equations. [Master dissertation], Linköping University, Sweden, 2010
    [6] 宋宇, 孙富春, 李庆玲.移动机器人的改进无迹粒子滤波蒙特卡罗定位算法.自动化学报, 2010, 36(6): 851-857 http://www.aas.net.cn/CN/abstract/abstract13665.shtml

    Song Yu, Sun Fu-Chun, Li Qing-Ling. Mobile robot Monte Carlo localization based on improved unscented particle filter. Acta Automatica Sinica, 2010, 36(6): 851-857 http://www.aas.net.cn/CN/abstract/abstract13665.shtml
    [7] Arasaratnam I, Haykin S. Cubature Kalman filters. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269 doi: 10.1109/TAC.2009.2019800
    [8] Wahlström N, Gustafsson F. Magnetometer modeling and validation for tracking metallic targets. IEEE Transactions on Signal Processing, 2014, 62(3): 545-556 doi: 10.1109/TSP.2013.2274639
    [9] Andrews A P. Method of Estimating Location and Orientation of Magnetic Dipoles Using Extended Kalman Filtering and Schweppe Likelihood Ratio Detection, U. S. Patent 5381095, January 1995.
    [10] 姚振宁, 刘大明, 刘道胜, 朱兴乐.基于不敏粒子滤波的水中非合作磁性目标实时磁定位方法.物理学报, 2014, 63(22): 309-314 http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201422042.htm

    Yao Zhen-Ning, Liu Da-Ming, Liu Sheng-Dao, Zhu XingLe. A real-time magnetic localization method of underwater non-cooperative magnetic targets based on unscented particle filter. Acta Physica Sinica, 2014, 63(22): 309-314 http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201422042.htm
    [11] Bar-Shalom Y, Li X R, Kirubarajan T. Estimation with Applications to Tracking and Navigation. New York: John Wiley & Sons, 2001.
    [12] Zhang K. A new GPS/RFID integration algorithm based on iterated reduced sigma point Kalman filter for vehicle navigation. In: Proceedings of the 22nd International Technical Meeting of the Satellite Division of the Institute of Navigation. Seattle, USA: The Institute of Navigation, 2009. 1604-1611
    [13] Zhan R H, Wan J W. Iterated unscented Kalman filter for passive target tracking. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1155-1163 doi: 10.1109/TAES.2007.4383605
    [14] Zanetti R. Adaptable recursive update filter. Journal of Guidance, Control, & Dynamics, 2015, 38(7): 1295-1300
    [15] Huang Y L, Zhang Y G, Li N, Zhao L. Design of sigma-point Kalman filter with recursive updated measurement. Circuits, Systems, & Signal Processing, 2016, 35(5): 1767-1782
    [16] Huang Y L, Zhang Y G, Li N, Zhao L. Gaussian approximate filter with progressive measurement update. In: Proceedings of the 54th Annual Conference on Decision and Control. Osaka, Japan: IEEE, 2015. 4344-4349
    [17] Daum F, Huang J. Nonlinear filters with particle flow induced by log-homotopy. In: Proceedings of the 2009 SPIE 7336, Signal Processing, Sensor Fusion, and Target Recognition XVIII. Orlando, Florida, USA: SPIE, 2009. DOI: 10.1117/12.814241
    [18] Daum F, Huang J, Noushin A. Coulomb0s law particle flow for nonlinear filters. In: Proceedings of the 2011 SPIE 8137, Signal and Data Processing of Small Targets. San Diego, USA: SPIE, 2011. DOI: 10.1117/12.887514
    [19] Charalampidis D, Jilkov V P, Wu J D. Implementation and performance of FPGA-accelerated particle flow filter. In: Proceedings of SPIE 9596, Signal and Data Processing of Small Targets. San Diego, California, United States: SPIE, 2015. DOI: 10.1117/12.2179546
    [20] Yang T, Laugesen R S, Mehta P G, Meyn S P. Multivariable feedback particle filter. Automatica, 2016, 71: 10-23 doi: 10.1016/j.automatica.2016.04.019
    [21] 彭孝东, 张铁民, 李继宇, 陈瑜.基于传感器校正与融合的农用小型无人机姿态估计算法.自动化学报, 2015, 41(4): 854-860 http://www.aas.net.cn/CN/abstract/abstract18659.shtml

    Peng Xiao-Dong, Zhang Tie-Min, Li Ji-Yu, Chen Yu. Attitude estimation algorithm of agricultural small-UAV based on sensors fusion and calibration. Acta Automatica Sinica, 2015, 41(4): 854-860 http://www.aas.net.cn/CN/abstract/abstract18659.shtml
    [22] Gustafsson F, Hendeby G. Some relations between extended and unscented Kalman filters. IEEE Transactions on Signal Processing, 2012, 60(2): 545-555 doi: 10.1109/TSP.2011.2172431
    [23] Perea L, How J, Breger L, Elosegui P. Nonlinearity in sensor fusion: divergence issues in EKF, modified truncated SOF, and UKF. In: Proceedings of the 2007 AIAA Guidance, Navigation and Control Conference and Exhibit. South Carolina, USA: AIAA, 2007. DOI: 10.2514/6.2007-6514
    [24] Morelande M R, García-Fernáandez A F. Analysis of Kalman filter approximations for nonlinear measurements. IEEE Transactions on Signal Processing, 2013, 61(22): 5477-5484 doi: 10.1109/TSP.2013.2279367
    [25] Jazwinski A H. Stochastic Processes and Filtering Theory. New York: Academic Press, 1970.
    [26] 李杰, 陈建兵.随机动力系统中的概率密度演化方程及其研究进展.力学进展, 2010, 40(2): 170-188 doi: 10.6052/1000-0992-2010-2-J2009-105

    Li Jie, Chen Jian-Bing. Advances in the research on probability density evolution equations of stochastic dynamical systems. Advances in Mechanics, 2010, 40(2): 170-188 doi: 10.6052/1000-0992-2010-2-J2009-105
    [27] Simon D. Optimal State Estimation. New York: John Wiley & Sons, 2006. 234
    [28] Berntorp K. Feedback Particle Filter: Application and Evaluation, Technical Report TR2015-074, Mitsubishi Electric Research Laboratories, USA, 2015.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  3152
  • HTML全文浏览量:  280
  • PDF下载量:  615
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-19
  • 录用日期:  2016-07-20
  • 刊出日期:  2017-05-01

目录

    /

    返回文章
    返回