2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于决策空间变换最近邻方法的Pareto支配性预测

李文彬 贺建军 冯彩英 郭观七

李文彬, 贺建军, 冯彩英, 郭观七. 基于决策空间变换最近邻方法的Pareto支配性预测. 自动化学报, 2017, 43(2): 294-301. doi: 10.16383/j.aas.2017.c150877
引用本文: 李文彬, 贺建军, 冯彩英, 郭观七. 基于决策空间变换最近邻方法的Pareto支配性预测. 自动化学报, 2017, 43(2): 294-301. doi: 10.16383/j.aas.2017.c150877
LI Wen-Bin, HE Jian-Jun, FENG Cai-Ying, GUO Guan-Qi. Prediction of Pareto Dominance Using Nearest Neighbor Method Based on Decision Space Transformation. ACTA AUTOMATICA SINICA, 2017, 43(2): 294-301. doi: 10.16383/j.aas.2017.c150877
Citation: LI Wen-Bin, HE Jian-Jun, FENG Cai-Ying, GUO Guan-Qi. Prediction of Pareto Dominance Using Nearest Neighbor Method Based on Decision Space Transformation. ACTA AUTOMATICA SINICA, 2017, 43(2): 294-301. doi: 10.16383/j.aas.2017.c150877

基于决策空间变换最近邻方法的Pareto支配性预测

doi: 10.16383/j.aas.2017.c150877
基金项目: 

国家自然科学基金 61174132

国家自然科学基金 60975049

湖南省教育厅科学研究重点项目 15A079

详细信息
    作者简介:

    李文彬中南大学信息科学与工程学院博士研究生.主要研究方向为进化计算, 多目标优化.E-mail:wenbin_lii@163.com

    贺建军中南大学教授.主要研究方向为复杂工业过程建模与优化控制.E-mail:jjhe@mail.csu.edu.cn

    冯彩英湖南理工学院信息与通信工程学院硕士研究生.主要研究方向为计算智能, 多目标优化.E-mail:fengcy0829@163.com

    通讯作者:

    郭观七湖南理工学院教授.主要研究方向为计算智能, 多目标优化, 模式识别.本文通信作者.E-mail:gq.guo@163.com

Prediction of Pareto Dominance Using Nearest Neighbor Method Based on Decision Space Transformation

Funds: 

National Natural Science Foundation of China 61174132

National Natural Science Foundation of China 60975049

Scientific Research Fund of Hunan Provincial Education Department 15A079

More Information
    Author Bio:

    Ph. D. candidate at the Institute of Information Science and Engineering, Central South University. His research interest covers evolutionary computation and multi-objective optimization

    Professor at Central South University. His research interest covers modeling and optimal control of complex industrial process

    Master student at the Institute of Information and Communication Engineering, Hunan Institute of Science and Technology. Her research interest covers computational intelligence and multi-objective optimization

    Corresponding author: GUO Guan-Qi Professor at Hunan Institute of Science and Technology. His research interest covers computational intelligence, multi-objective optimization, and pattern recognition. Corresponding Author of this paper
  • 摘要: 为提高在决策空间运用最近邻方法预测多目标优化Pareto支配性的精度,提出一种基于决策空间变换的最近邻预测方法.在分析目标函数与决策分量相关性的基础上,提出属性变化趋势模型的构造方法,建立低计算成本的属性趋势代理模型.通过属性趋势模型引入决策空间到目标空间的映射知识,对多目标问题的决策空间进行变换,使决策空间的最近邻更有效反映目标空间的最近邻.选取具有不同相关系数特征的典型多目标优化问题,进行Pareto支配性预测的可对比实验,结果表明在新空间中运用最近邻方法可显著提高分类准确性.
    1)  本文责任编委 乔俊飞
  • 图  1  决策空间的线性化过程(圆点表示原样本点的分布, 三角表示经过趋势模型$y=g (x_i)$映射后的样本点

    Fig.  1  The linearization process of decision space (Circles are the original sample points and triangles are the mapped sample points by the trend model $y=g (x_i)$.)

    表  1  测试函数的决策属性与目标属性的相关系数

    Table  1  Correlation coefficient of decision attribute and objective attribute of test function

    测试函数 f1 (x) f2 (x) f3 (x)
    ZDT1 n=10 (1, 0, 0, 0, …) (-0.59, 0.27, 0.27, 0.27, …)
    n=30 (1, 0, 0, 0, …) (-0.79, 0.11, 0.11, 0.11, …)
    ZDT3 n=3 (1, 0, 0) (-0.28, 0.65, 0.65)
    n=10 (1, 0, 0, 0, …) (-0.49, 0.25, 0.25, …)
    ZDT6 n=3 (0.47, 0, 0) (0.02, 0.69, 0.69)
    n=10 (0.48, 0, 0, 0, …) (0.02, 0.69, 0.69)
    KUR n=3 (0.02, 0, -0.01) (0.02, 0.02, 0.02)
    UF1 n=15 (0.92, 0, -0.07, 0, -0.07, 0, …) (-0.51, -0.11, 0, -0.12, …)
    DTLZ2 n=10 (-0.64, -0.64, 0.01, -0.01, …) (-0.64, 0.64, 0.01, 0.01, …) (0.94, 0, 0, 0.01, 0, …)
    DTLZ4 n=10 (-0.64, -0.64, 0.01, -0.01, …) (-0.64, 0.64, 0.01, 0, -0.01, …) (0.94, -0.01, 0, 0.01, 0, …)
    下载: 导出CSV

    表  2  变换前后的最近邻分类误差

    Table  2  Nearest neighbor classification error before and after transformation

    测试函数 按目标分类的误差均值 按目标分类的最大误差
    f1 (x) f2 (x) f3 (x) f1 (x) f2 (x) f3 (x)
    ZDT1 原空间 0.1516 0.4302 0.5115 1.3159
    变换后 0.0013 0.1725 0.0074 0.9304
    ZDT3 原空间 0.0437 0.446 0.1837 1.7126
    变换后 0.0011 0.3282 0.0042 1.5289
    ZDT6 原空间 0.1047 0.1873 0.6864 1.8303
    变换后 0.0031 0.0765 0.0454 0.4374
    KUR 原空间 0.6601 5.7885 2.2948 23.423
    变换后 0.2909 1.6843 1.6411 4.6841
    UF1 原空间 0.1985 0.1753 0.8847 1.0659
    变换后 0.0753 0.068 0.2736 0.4554
    DTLZ2 原空间 0.2314 0.2368 0.2344 1.0053 0.8732 1.0964
    变换后 0.0624 0.0569 0.0471 0.3102 0.1942 0.199
    DTLZ4 原空间 0.2072 0.2431 0.2459 0.8283 0.7537 0.895
    变换后 0.0582 0.0724 0.0488 0.2478 0.2178 0.0488
    下载: 导出CSV

    表  3  Pareto支配性预测的平均精度

    Table  3  Average precision of Pareto dominance prediction

    测试函数 方法 n Pareto支配性(%)
    总体正确 非支配类 支配类 不可比类
    ZDT1 DSTNN 10 92.32 81.7 88.61 96.64
    ENNC 64.79 40.58 42.3 74.88
    ESNNC 83.23 70.32 75.24 88.31
    GP 88.76 65.55 65.55 90.21
    DSTNN 30 90.85 71.2 81.51 95.2
    ENNC 54.32 17.36 23.26 63.41
    ESNNC 68.9 37.49 40.28 80.54
    GP 73.41 32.97 32.97 84.49
    ZDT3 DSTNN 3 93.13 80.47 93.14 97.19
    ENNC 76.84 75.54 69.03 79.2
    ESNNC 68.82 56.95 68.85 72.26
    GP 57.73 54.6 54.6 59.48
    DSTNN 10 83.29 71.53 77.56 88.69
    ENNC 59.33 34.81 38.61 70.03
    ESNNC 77.86 72.05 66.85 84.12
    GP 71.1 54.2 54.2 78.56
    ZDT6 DSTNN 3 95.94 89.83 95.59 99.36
    ENNC 53.68 42.23 48.88 55.9
    ESNNC 49.78 43.06 49.49 52.97
    GP 52.96 36.92 36.92 66.89
    DSTNN 10 91.43 87.77 93.58 92.33
    ENNC 44.3 37.8 47.55 46.1
    ESNNC 64.86 66.12 60.53 66.44
    GP 48.88 47.03 47.03 50.82
    DTLZ2 DSTNN 10 86.49 43.89 66.87 89.66
    ENNC 54.89 17.24 17.42 58.87
    ESNNC 90.92 22.68 28.41 95.31
    GP 89.5 12 12 96.75
    DTLZ4 DSTNN 10 85.39 50.14 74.64 88.55
    ENNC 53.74 16.93 20.42 57.23
    ESNNC 72.23 48.38 44.56 79.99
    GP 70.87 9.51 9.51 76.65
    UF1 DSTNN 10 86.14 71.9 84.17 91.64
    ENNC 60.08 54.86 50.23 65.76
    ESNNC 60.84 65.23 70.69 71.49
    GP 57.7 61.53 61.53 51.61
    KUR DSTNN 3 85.43 79.73 86.79 89.87
    ENNC 46.47 53.95 56.71 34.54
    ESNNC 50.73 52.88 55.39 45.02
    GP 44.19 41.79 41.79 47.76
    下载: 导出CSV
  • [1] 公茂果, 焦李成, 杨咚咚, 马文萍.进化多目标优化算法研究.软件学报, 2009, 20(2):271-289 doi: 10.3724/SP.J.1001.2009.00271

    Gong Mao-Guo, Jiao Li-Cheng, Yang Dong-Dong, Ma Wen-Ping. Research on evolutionary multi-objective optimization algorithms. Journal of Software, 2009, 20(2):271-289 doi: 10.3724/SP.J.1001.2009.00271
    [2] 詹炜.求解高维多目标优化问题的流形学习算法研究[博士学位论文], 中国地质大学, 中国, 2013.

    Zhan Wei. Research on Manifold Learning Algorithm for High-Dimensional Multi-objective Optimization Problems[Ph.D. dissertation], China University of Geosciences, China, 2013.
    [3] Tesch M, Schneider J, Choset H. Expensive multiobjective optimization for robotics. In:Proceedings of the 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany:IEEE, 2013. 973-980
    [4] Douguet D. e-LEA3D:a computational-aided drug design web server. Nucleic Acids Research, 2010, 38(Suppl 2):W615-W621 https://www.researchgate.net/publication/44575457_e-LEA3D_A_computational-aided_drug_design_web_server
    [5] Zhang Q F, Liu W D, Tsang E, Virginas B. Expensive multiobjective optimization by MOEA/D with Gaussian process model. IEEE Transactions on Evolutionary Computation, 2010, 14(3):456-474 doi: 10.1109/TEVC.2009.2033671
    [6] Palar P S, Tsuchiya T, Parks G T. A comparative study of local search within a surrogate-assisted multi-objective memetic algorithm framework for expensive problems. Applied Soft Computing Journal, 2016, 43:1-19 doi: 10.1016/j.asoc.2015.12.039
    [7] Rosales-Pérez A, Coello C A C, Gonzalez J A, Reyes-Garcia C A, Escalante H J. A hybrid surrogate-based approach for evolutionary multi-objective optimization. In:Proceedings of the 2013 IEEE Congress on Evolutionary Computation (CEC). Cancun, Mexico:IEEE, 2013. 2548-2555
    [8] Akhtar T, Shoemaker C A. Multi objective optimization of computationally expensive multi-modal functions with RBF surrogates and multi-rule selection. Journal of Global Optimization, 2016, 64(1):17-32 doi: 10.1007/s10898-015-0270-y
    [9] Montemayor-García G, Toscano-Pulido G. A study of surrogate models for their use in multiobjective evolutionary algorithms. In:Proceedings of the 8th International Conference on Electrical Engineering Computing Science and Automatic Control (CCE). Merida, Mexico:IEEE, 2011. 1-6
    [10] Guo G Q, Li W, Yang B, Li W B, Yin C. Predicting Pareto dominance in multi-objective optimization using pattern recognition. In:Proceedings of the 2nd International Conference on Intelligent System Design and Engineering Application (ISDEA). Sanya, China:IEEE, 2012. 456-459
    [11] Guo G Q, Yin C, Yan T S, Li W. Nearest neighbor classification of Pareto dominance in multi-objective optimization. In:Proceedings of the 5th International Conference on Advanced Computational Intelligence (ICACI). Nanjing, China:IEEE, 2012. 328-331
    [12] 郭观七, 尹呈, 曾文静, 李武, 严太山.基于等价分量交叉相似性的Pareto支配性预测.自动化学报, 2014, 40(1):33-40 http://www.aas.net.cn/CN/abstract/abstract18264.shtml

    Guo Guan-Qi, Yin-Cheng, Zeng Wen-Jing, Li Wu, Yan Tai-Shan. Prediction of Pareto dominance by cross similarity of equivalent components. Acta Automatica Sinica, 2014, 40(1):33-40 http://www.aas.net.cn/CN/abstract/abstract18264.shtml
    [13] 陈志旺, 白锌, 杨七, 黄兴旺, 李国强.区间多目标优化中决策空间约束、支配及同序解筛选策略.自动化学报, 2015, 41(12):2115-2124 http://www.aas.net.cn/CN/abstract/abstract18784.shtml

    Chen Zhi-Wang, Bai Xin, Yang Qi, Huang Xing-Wang, Li Guo-Qiang. Strategy of constraint, dominance and screening solutions with same sequence in decision space for interval multi-objective optimization. Acta Automatica Sinica, 2015, 41(12):2115-2124 http://www.aas.net.cn/CN/abstract/abstract18784.shtml
    [14] 盛骤, 谢式千, 潘承毅.概率论与数理统计.北京:高等教育出版, 2005.

    Sheng Zhou, Xie Shi-Qian, Pan Cheng-Yi. Probability and Mathematical Statistics. Beijing:Higher Education Press, 2005.
    [15] 田作华, 陈学中, 翁正新.工程控制基础.北京:清华大学出版社, 2007.

    Tian Zuo-Hua, Chen Xue-Zhong, Weng Zheng-Xin. Control Engineering Construction. Beijing:Tsinghua University Press, 2007.
    [16] Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms:empirical results. Evolutionary Computation, 2000, 8(2):173-195 doi: 10.1162/106365600568202
    [17] Kursawe F. A variant of evolution strategies for vector optimization. Parallel Problem Solving from Nature. Berlin:Springer, 1991.
    [18] Deb K, Thiele L, Laumanns M, Zitzler E. Scalable multi-objective optimization test problems. In:Proceedings of the 2002 IEEE Congress on Evolutionary Computation (CEC). Honolulu, USA:IEEE, 2002. 825-830
    [19] Li H, Zhang Q F. Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computation, 2009, 13(2):284-302 doi: 10.1109/TEVC.2008.925798
  • 加载中
图(1) / 表(3)
计量
  • 文章访问数:  1976
  • HTML全文浏览量:  213
  • PDF下载量:  713
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-29
  • 录用日期:  2016-08-15
  • 刊出日期:  2017-02-01

目录

    /

    返回文章
    返回