2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类采用分数阶PIλ控制器的分数阶系统可镇定性判定准则

高哲

高哲. 一类采用分数阶PIλ控制器的分数阶系统可镇定性判定准则. 自动化学报, 2017, 43(11): 1993-2002. doi: 10.16383/j.aas.2017.c150875
引用本文: 高哲. 一类采用分数阶PIλ控制器的分数阶系统可镇定性判定准则. 自动化学报, 2017, 43(11): 1993-2002. doi: 10.16383/j.aas.2017.c150875
GAO Zhe. Stabilization Criterion for A Class of Interval Fractional-order Systems Using Fractional-order PIλ Controllers. ACTA AUTOMATICA SINICA, 2017, 43(11): 1993-2002. doi: 10.16383/j.aas.2017.c150875
Citation: GAO Zhe. Stabilization Criterion for A Class of Interval Fractional-order Systems Using Fractional-order PIλ Controllers. ACTA AUTOMATICA SINICA, 2017, 43(11): 1993-2002. doi: 10.16383/j.aas.2017.c150875

一类采用分数阶PIλ控制器的分数阶系统可镇定性判定准则

doi: 10.16383/j.aas.2017.c150875
基金项目: 

辽宁省教育厅科学研究一般项目 L2015198

辽宁省教育厅科学研究一般项目 L2015194

国家自然科学基金 61304094

详细信息
    作者简介:

    高哲  辽宁大学轻型产业学院电气工程及其自动化系副教授.2012年获得北京理工大学博士学位.主要研究方向为分数阶控制系统.E-mail:gaozhe83@gmail.com

Stabilization Criterion for A Class of Interval Fractional-order Systems Using Fractional-order PIλ Controllers

Funds: 

Scientific Research Fund of Liaoning Provincial Education Department L2015198

Scientific Research Fund of Liaoning Provincial Education Department L2015194

National Natural Science Foundation of China 61304094

More Information
    Author Bio:

     Associate professor in the Department of Electrical Engineering and Automation, College of Light Industry, Liaoning University. He received his Ph. D. degree from Beijing Institute of Technology in 2012. His research interest covers fractional-order control systems

  • 摘要: 针对含有一个分数阶项的区间分数阶被控对象,提出了采用分数阶PIλ控制器的闭环系统可镇定性判定准则.将闭环系统的特征函数分解为扰动函数和标称函数,给出了扰动函数值集顶点的构造方法.根据被控对象分数阶阶次和控制器的阶次,研究了值集形状是否切换和切换频率的计算方法.此外,给出了测试频率区间的上下界,以实现在有限频率区间内判定闭环系统值集与原点的位置关系.在假设值集顶点函数在测试频率区间内不为零和闭环标称系统稳定的情况下,以解析的方式提出了采用分数阶PIλ控制器闭环系统的可镇定性判定准则.最后,通过对数值算例的可镇定性分析,验证了提出的判定准则的有效性.
    1)  本文责任编委 董海荣
  • 图  1  当$\omega=0.4, 0.8, 1.2, \omega_0, 2, 3$时, 特征函数$F({\rm j}\omega)$的值集

    Fig.  1  Value sets of characteristic function $F({\rm j}\omega)$ for $\omega=0.4, 0.8, 1.2, \omega_0, 2, 3$

    图  2  顶点函数$|F^j_i|$, $i=1, 2, \cdots, L_j$, $j=1, 2, 3$, 在$\omega\in\Omega'_j$的变化曲线

    Fig.  2  Curves of vertex functions $|F^j_i|$, $i=1, 2, \cdots, L_j$, $j=1, 2, 3$, within $\omega\in\Omega'_j$

    图  3  $F(w)$的特征值分布

    Fig.  3  Distribustion of eigenvalues of $F(w)$

    图  4  $D(\omega)$变化曲线

    Fig.  4  Curve of $D(\omega)$

    图  5  当$\omega=1, 1.2, 1.4, \omega_0, 1.8, 2$时, 特征函数$F({\rm j}\omega)$的值集

    Fig.  5  Value sets of characteristic function $F({\rm j}\omega)$ for $\omega=1, 1.2, 1.4, \omega_0, 1.8, 2$

    图  6  扩大不确定区间后的顶点函数$|F^j_i|$, $i=1, 2, \cdots, L_j$, $j=1, 2, 3$, 在$\omega\in\Omega'_j$的变化曲线

    Fig.  6  Curves of vertex functions $|F^j_i|$, $i=1, 2, \cdots, L_j$, $j=1, 2, 3$, within $\omega\in\Omega'_j$ for enlarged interval case

    图  7  当$\omega=\omega_{4, 4}^1$时, 扩大不确定区间后的$F(\omega_{4, 4}^1{\rm j})$对应的值集

    Fig.  7  Value set of $F(\omega_{4, 4}^1{\rm j})$ at $\omega=\omega_{4, 4}^1$ for enlarged interval case

    图  8  扩大不确定区间后的$F(w)$的特征值分布

    Fig.  8  Curve of $D(\omega)$ for enlarged interval case

    图  9  扩大不确定区间后的$D(\omega)$变化曲线

    Fig.  9  Curve of $D(\omega)$ for enlarged interval case

    图  10  扩大不确定区间后的$D(\omega)$变化曲线的局部放大图

    Fig.  10  Zoom on curve of $D(\omega)$ for enlarged interval case

  • [1] Magin R, Ortigueira M D, Podlubny I, Trujillo J. On the fractional signals and systems. Signal Processing, 2011, 91(3):350-371 doi: 10.1016/j.sigpro.2010.08.003
    [2] Monje C A, Chen Y Q, Vinagre B M, Xue D Y, Feliu-Batlle V. Fractional-order Systems and Controls. London:Springer-Verlog, 2010.
    [3] Monje C A, Vinagre B M, Feliu V, Chen Y Q. Tuning and auto-tuning of fractional order controllers for industry applications. Control Engineering Practice, 2008, 16(7):798-812 doi: 10.1016/j.conengprac.2007.08.006
    [4] Machado J T, Kiryakova V, Mainardi F. Recent history of fractional calculus. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(3):1140-1153 doi: 10.1016/j.cnsns.2010.05.027
    [5] Podlubny I. Fractional-order systems and PIλDμ controllers. IEEE Transactions on Automatic Control, 1999, 44(1):208-214 doi: 10.1109/9.739144
    [6] Fabrizio P, Antonio V. Tuning rules for optimal PID and fractional-order PID controllers. Journal of Process Control, 2011, 21(1):69-81 doi: 10.1016/j.jprocont.2010.10.006
    [7] Padula F, Vilanova, R, Visioli A. H optimization-based fractional-order PID controllers design. International Journal of Robust and Nonlinear Control, 2014, 24(17):3009-3026 doi: 10.1002/rnc.v24.17
    [8] Lee C H, Chang F K. Fractional-order PID controller optimization via improved electromagnetism-like algorithm. Expert Systems with Applications, 2010, 37(12):8871-8878 doi: 10.1016/j.eswa.2010.06.009
    [9] Zeng G Q, Chen J, Dai Y X, Li L M, Zheng C W, Chen M R. Design of fractional order PID controller for automatic regulator voltage system based on multi-objective extremal optimization. Neurocomputing, 2015, 160:173-184 doi: 10.1016/j.neucom.2015.02.051
    [10] Sondhi S, Hote Y V. Fractional order PID controller for load frequency control. Energy Conversion and Management, 2014, 85:343-353 doi: 10.1016/j.enconman.2014.05.091
    [11] Kumar V, Rana K P S, Mishra P. Robust speed control of hybrid electric vehicle using fractional order fuzzy PD and PI controllers in cascade control loop. Journal of the Franklin Institute, 2016, 353(8):1713-1741 doi: 10.1016/j.jfranklin.2016.02.018
    [12] Castillo-Garcia F J, Feliu-Batlle V, Rivas-Perez R. Frequency specifications regions of fractional-order PI controllers for first order plus time delay processes. Journal of Process Control, 2013, 23(4):598-612 doi: 10.1016/j.jprocont.2013.01.001
    [13] Luo Y, Chen Y Q. Stabilizing and robust fractional order PI controller synthesis for first order plus time delay systems. Automatica, 2012, 48(9):2159-2167 doi: 10.1016/j.automatica.2012.05.072
    [14] Wang D J, Gao X L. Stability margins and H co-design with fractional-order PIλ controller. Asian Journal of Control, 2013, 15(3):691-697 doi: 10.1002/asjc.2013.15.issue-3
    [15] Zheng S Q, Tang X Q, Song B. Graphical tuning method of FOPID controllers for fractional order uncertain system achieving robust D-stability. International Journal of Robust and Nonlinear Control, 2016, 26(5):1112-1142 doi: 10.1002/rnc.v26.5
    [16] Tan N, Özgüven Ö F, Özyetkin M M. Robust stability analysis of fractional order interval polynomials. ISA Transactions, 2009, 48(2):166-172 doi: 10.1016/j.isatra.2009.01.002
    [17] Moornani K A, Haeri M. Robust stability testing function and Kharitonov-like theorem for fractional order interval systems. IET Control Theory & Applications, 2010, 4(10):2097-2108
    [18] 高哲, 廖晓钟.区间分数阶系统的鲁棒稳定性判别准则:0< α < 1情况.自动化学报, 2012, 38(2):175-182 http://www.aas.net.cn/CN/abstract/abstract17671.shtml

    Gao Zhe, Liao Xiao-Zhong. Robust stability criteria for interval fractional-order systems:the 0< α < 1 case. Acta Automatica Sinica, 2012, 38(2):175-182 http://www.aas.net.cn/CN/abstract/abstract17671.shtml
    [19] Moornani K A, Haeri M. Necessary and sufficient conditions for BIBO-stability of some fractional delay systems of neutral type. IEEE Transactions on Automatic Control, 2011, 56(1):125-128 doi: 10.1109/TAC.2010.2088790
    [20] Moornani K A, Haeri M. On robust stability of LTI fractional-order delay systems of retarded and neutral type. Automatica, 2010, 46(2):362-368 doi: 10.1016/j.automatica.2009.11.006
    [21] Gao Z. Robust stability criterion for fractional-order systems with interval uncertain coefficients and a time-delay. ISA Transactions, 2015, 58:76-84 doi: 10.1016/j.isatra.2015.05.019
    [22] Liang T N, Chen J J, Zhao H H. Robust stability region of fractional order PIλ controller for fractional order interval plant. International Journal of Systems Science, 2013, 44(9):1762-1773 doi: 10.1080/00207721.2012.670291
    [23] Gao Z. Robust stabilization criterion of fractional-order controllers for interval fractional-order plants. Automatica, 2015, 61:9-17 doi: 10.1016/j.automatica.2015.07.021
    [24] Matignon D. Stability results for fractional differential equations with applications to control processing. In:Proceedings of the 1996 Computational Engineering in Systems Applications. Lille, France:IEEE/SMC, 1996. 963-968
  • 加载中
图(10)
计量
  • 文章访问数:  1995
  • HTML全文浏览量:  191
  • PDF下载量:  481
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-29
  • 录用日期:  2016-06-30
  • 刊出日期:  2017-11-20

目录

    /

    返回文章
    返回