[1]
|
Choi J Y, Farrell J A. Adaptive observer backstepping control using neural networks. IEEE Transactions on Neural Networks, 2001, 12(5): 1103-1112 doi: 10.1109/72.950139
|
[2]
|
Wang C, Hill D J, Ge S S, Chen G R. An ISS-modular approach for adaptive neural control of pure-feedback systems. Automatica, 2006, 42(5): 723-731 doi: 10.1016/j.automatica.2006.01.004
|
[3]
|
Chen W S, Zhang Z Q. Globally stable adaptive backstepping fuzzy control for output-feedback systems with unknown high-frequency gain sign. Fuzzy Sets and Systems, 2010, 161(6): 821-836 doi: 10.1016/j.fss.2009.10.026
|
[4]
|
Wu J, Chen W S, Yang F Z, Li J, Zhu Q. Global adaptive neural control for strict-feedback time-delay systems with predefined output accuracy. Information Sciences, 2015, 301: 27-43 doi: 10.1016/j.ins.2014.12.039
|
[5]
|
Wu J, Chen W S, Li J. Fuzzy-approximation-based global adaptive control for uncertain strict-feedback systems with a priori known tracking accuracy. Fuzzy Sets and Systems, 2015, 273: 1-25 doi: 10.1016/j.fss.2014.10.009
|
[6]
|
Wang M L, Zhang Z Q. Globally adaptive asymptotic tracking control of nonlinear systems using nonlinearly parameterized fuzzy approximator. Journal of the Franklin Institute, 2015, 352(7): 2783-2795 doi: 10.1016/j.jfranklin.2015.04.011
|
[7]
|
Huang J T. Global tracking control of strict-feedback systems using neural networks. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(11): 1714-1725 doi: 10.1109/TNNLS.2012.2213305
|
[8]
|
Fu J, Ma R C, Chai T Y. Global finite-time stabilization of a class of switched nonlinear systems with the powers of positive odd rational numbers. Automatica, 2015, 54: 360-373 doi: 10.1016/j.automatica.2015.02.023
|
[9]
|
Xu B, Yang C G, Pan Y P. Global neural dynamic surface tracking control of strict-feedback systems with application to hypersonic flight vehicle. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(10): 2563-2575 doi: 10.1109/TNNLS.2015.2456972
|
[10]
|
Chen W S, Ge S S, Wu J, Gong M G. Globally stable adaptive backstepping neural network control for uncertain strict-feedback systems with tracking accuracy known a priori. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(9): 1842-1854 doi: 10.1109/TNNLS.2014.2357451
|
[11]
|
Ge S S, Hong F, Lee T H. Robust adaptive control of nonlinear systems with unknown time delays. Automatica, 2005, 41(7): 1181-1190 doi: 10.1016/j.automatica.2005.01.011
|
[12]
|
Tong S C, Li Y, Li Y M, Liu Y J. Observer-based adaptive fuzzy backstepping control for a class of stochastic nonlinear strict-feedback systems. IEEE Transactions on Systems, Man, and Cybernetics: Part B (Cybernetics), 2011, 41(6): 1693-1704 doi: 10.1109/TSMCB.2011.2159264
|
[13]
|
Guo T, Liu G Y. Adaptive fuzzy control for unknown nonlinear time-delay systems with virtual control functions. International Journal of Control, Automation and Systems, 2011, 9(6): 1227-1234 doi: 10.1007/s12555-011-0625-1
|
[14]
|
Guo T, Wang A M. Simplified output feedback stabilization for time-delay interconnected systems based on dynamic surface control. International Review on Computers and Software, 2012, 7(1): 275-282 https://www.researchgate.net/publication/293080709_Simplified_output_feedback_stabilization_for_time-delay_interconnected_systems_based_on_dynamic_surface_control
|
[15]
|
Yang Y, Yue D, Xue Y S. Decentralized adaptive neural output feedback control of a class of large-scale time-delay systems with input saturation. Journal of the Franklin Institute, 2015, 352(5): 2129-2151 doi: 10.1016/j.jfranklin.2015.02.009
|
[16]
|
Zhou Q, Shi P, Xu S Y, Li H Y. Observer-based adaptive neural network control for nonlinear stochastic systems with time delay. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(1): 71-80 doi: 10.1109/TNNLS.2012.2223824
|
[17]
|
Chen B, Liu X P, Liu K F, Lin C. Adaptive fuzzy tracking control of nonlinear MIMO systems with time-varying delays. Fuzzy Sets and Systems, 2013, 217: 1-21 doi: 10.1016/j.fss.2012.11.002
|
[18]
|
Chen B, Liu X P, Liu K F, Lin C. Adaptive control for nonlinear MIMO time-delay systems based on fuzzy approximation. Information Sciences, 2013, 222: 576-592 doi: 10.1016/j.ins.2012.07.058
|
[19]
|
Zhang X, Lin Y. Adaptive control of nonlinear time-delay systems with application to a two-stage chemical reactor. IEEE Transactions on Automatic Control, 2015, 60(4): 1074-1079 doi: 10.1109/TAC.2014.2330436
|
[20]
|
Tang X D, Tao G, Joshi S M. Adaptive actuator failure compensation for parametric strict feedback systems and an aircraft application. Automatica, 2003, 39(11): 1975-1982 doi: 10.1016/S0005-1098(03)00219-X
|
[21]
|
Wang W, Wen C Y. Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance. Automatica, 2010, 46(12): 2082-2091 doi: 10.1016/j.automatica.2010.09.006
|
[22]
|
Fan H J, Liu B, Wang W, Wen C Y. Adaptive fault-tolerant stabilization for nonlinear systems with Markovian jumping actuator failures and stochastic noises. Automatica, 2015, 51: 200-209 doi: 10.1016/j.automatica.2014.10.084
|
[23]
|
Tang X D, Tao G, Joshi S M. Virtual grouping based adaptive actuator failure compensation for MIMO nonlinear systems. IEEE Transactions on Automatic Control, 2005, 50(11): 1775-1780 doi: 10.1109/TAC.2005.858633
|
[24]
|
Tong S C, Huo B Y, Li Y M. Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures. IEEE Transactions on Fuzzy Systems, 2014, 22(1): 1-15 doi: 10.1109/TFUZZ.2013.2241770
|
[25]
|
Boskovic J D, Mehra R K. Stable multiple model adaptive flight control for accommodation of a large class of control effector failures. In: Proceedings of the 1999 American Control Conference. San Diego, CA, USA: IEEE, 1999. 1920-1924
|
[26]
|
Zhang Z Q, Xu S Y, Guo Y, Chu Y M. Robust adaptive output-feedback control for a class of nonlinear systems with time-varying actuator faults. International Journal of Adaptive Control and Signal Processing, 2010, 24(9): 743-759 doi: 10.1002/acs.v24:9
|
[27]
|
Tang X D, Tao G, Joshi S M. Adaptive actuator failure compensation for nonlinear MIMO systems with an aircraft control application. Automatica, 2007, 43(11): 1869-1883 doi: 10.1016/j.automatica.2007.03.019
|
[28]
|
Li P, Yang G H. An adaptive fuzzy design for fault-tolerant control of MIMO nonlinear uncertain systems. Journal of Control Theory and Applications, 2011, 9(2): 244-50 doi: 10.1007/s11768-011-8167-x
|
[29]
|
Xu Y Y, Tong S C, Li Y M. Adaptive fuzzy decentralised fault-tolerant control for nonlinear large-scale systems with actuator failures and unmodelled dynamics. International Journal of Systems Science, 2015, 46(12): 2195-2209 doi: 10.1080/00207721.2013.859328
|
[30]
|
Wang L X. Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1994.
|
[31]
|
Krstic M, Kokotovic P V, Kanellakopoulos I. Nonlinear and Adaptive Control Design. New York: John Wiley & Sons, 1995.
|
[32]
|
Polycarpou M M. Stable adaptive neural control scheme for nonlinear systems. IEEE Transactions on Automatic Control, 1996, 41(3): 447-451 doi: 10.1109/9.486648
|