2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轮手一体机器人能量次优重构规划方法

胡亚南 马书根 李斌 王明辉 王越超

胡亚南, 马书根, 李斌, 王明辉, 王越超. 轮手一体机器人能量次优重构规划方法. 自动化学报, 2017, 43(8): 1358-1369. doi: 10.16383/j.aas.2017.c150752
引用本文: 胡亚南, 马书根, 李斌, 王明辉, 王越超. 轮手一体机器人能量次优重构规划方法. 自动化学报, 2017, 43(8): 1358-1369. doi: 10.16383/j.aas.2017.c150752
HU Ya-Nan, MA Shu-Gen, LI Bin, WANG Ming-Hui, WANG Yue-Chao. An Energy Suboptimal Reconfiguration Planning Approach to Wheel-manipulator Robots. ACTA AUTOMATICA SINICA, 2017, 43(8): 1358-1369. doi: 10.16383/j.aas.2017.c150752
Citation: HU Ya-Nan, MA Shu-Gen, LI Bin, WANG Ming-Hui, WANG Yue-Chao. An Energy Suboptimal Reconfiguration Planning Approach to Wheel-manipulator Robots. ACTA AUTOMATICA SINICA, 2017, 43(8): 1358-1369. doi: 10.16383/j.aas.2017.c150752

轮手一体机器人能量次优重构规划方法

doi: 10.16383/j.aas.2017.c150752
基金项目: 

国家自然科学基金 61473283

详细信息
    作者简介:

    马书根    日本立命馆大学机器人系教授, 中国科学院沈阳自动化研究所研究员.主要研究方向为仿生机器人, 防灾救援机器人, 环境适应机构学.E-mail:shugen@se.ritsumei.ac.jp

    李斌    中国科学院沈阳自动化研究所研究员.主要研究方向为仿生机器人, 移动机器人, 机器人控制.E-mail:libin@sia.cn

    王明辉    中国科学院沈阳自动化研究所研究员.主要研究方向为移动机器人, 机器人控制, 多机器人协作.E-mail:mhwang@sia.cn

    王越超    中国科学院沈阳自动化研究所研究员.主要研究方向为机器人学.E-mail:ycwang@sia.cn

    通讯作者:

    胡亚南    中国科学院沈阳自动化研究所博士.主要研究方向为机器人运动规划.本文通信作者.E-mail:robinvista2@gmail.com

An Energy Suboptimal Reconfiguration Planning Approach to Wheel-manipulator Robots

Funds: 

National Natural Science Foundation of China 61473283

More Information
    Author Bio:

       Professor in the Department of Robotics, Ritsumeikan University, Japan. He is also a professor at Shenyang Institute of Automation, Chinese Academy of Sciences, China. His research interest covers biomimetic robots, rescue robots, and environment-adaptive mechanism.E-mail:

       Professor at Shenyang Institute of Automation, Chinese Academy of Sciences. His research interest covers biomimetic robots, mobile robots, and robot control.E-mail:

       Professor at Shenyang Institute of Automation, Chinese Academy of Sciences. His research interest covers mobile robots, robot control, and multi-robot cooperation.E-mail:

       Professor at Shenyang Institute of Automation, Chinese Academy of Sciences. His research interest covers robotics.E-mail:

    Corresponding author: HU Ya-Nan     Ph. D. candidate at Shenyang Institute of Automation, Chinese Academy of Sciences. His main research interest is robot motion planning. Corresponding author of this paper.E-mail:robinvista2@gmail.com
  • 摘要: 模块化机器人的重构规划中,由于各模块的目标分配与其轨迹规划之间的耦合关系导致组合爆炸问题.本文提出一种基于简化模型的能量次优规划方法,将重构规划问题转化为最优控制问题,实现目标分配与轨迹规划的解耦.通过求解由Hamilton-Jacobi-Bellman(HJB)方程描述的最优控制问题,得到简化模型的值函数和最优轨迹.各模块的运动目标由值函数的吸引域决定.通过在最优轨迹附近的次优区域内搜索得到实际运动轨迹,提高了搜索效率.仿真实验结果表明,该方法能够选择合适的模块组合,并能在障碍物环境中生成满足机器人动力学约束的运动轨迹.
    1)  本文责任编委 侯增广
  • 图  1  轮手一体机器人及其重构

    Fig.  1  Wheel-manipulator robots and their reconfiguration

    图  2  二维无约束机器人重构例子

    Fig.  2  The reconfiguration example of unconstrained robots in two dimensions

    图  3  完整模型与简化模型的运动轨迹

    Fig.  3  The trajectory of the full model and that of the simplified model

    图  4  不平整地形中的运动轨迹参数

    Fig.  4  The parameters of the trajectory on uneven terrain

    图  5  不同初始位姿及单目标下简化模型的最优轨迹

    Fig.  5  The optimal trajectories of the simplified model with a single goal and different initial poses

    图  6  履带接地面作用力离散示意图

    Fig.  6  Illustration of the discretized track-terrain forces

    图  7  三角构形重构例子

    Fig.  7  The reconfiguration example of the triangle configuration

    图  8  串形构形重构例子

    Fig.  8  The reconfiguration example of the serial configuration

    图  9  二维无约束机器人距离最优重构的值函数

    Fig.  9  The value function of the reconfiguration of two dimensional unconstrained robots with optimal distance

    表  1  仿真参数

    Table  1  The simulation parameters

    参数含义参数名
    轮体质量$m_b /{\mathrm {kg}}$6
    手臂总质量$m_a /{\mathrm {kg}}$2
    履带长度(宽度)$l_t(w_t) /{\mathrm m}$0.2(0.2)
    履带离散间隔$(\Delta x, \Delta y) /{\mathrm m}$(0.02, 0.02)
    最小转向半径$r_m /{\mathrm m}$0.3
    优化准则参数$(c1, c2, c3, c4) $(8.1, 5.3, 28.0, 25.0)
    网格离散间隔$(h_x, h_y, h_{\theta}, h_v)$(0.05, 0.05, 0.13, 0.05)
    次优区域半径$\varepsilon /{\mathrm m}$0.1
    搜索网格离散间隔$(\textrm{d}x, \textrm{d}y, \textrm{d}\theta)$(0.02, 0.02, 0.2)
    单次探索距离$\Delta s /{\mathrm m}$0.05
    地面力学常数$(k_c, k_{\phi}, n_t, C)$(0.99, 1 528, 1.1, 5×104)
    地面特征参数$(c, \varphi, K)$ $(1 040, 28^{\circ}, 0.0254) $
    下载: 导出CSV
  • [1] Yim M, Shen W M, Salemi B, Rus D, Moll M, Lipson H, Klavins E, Chirikjian G S. Modular self-reconfigurable robot systems. IEEE Robotics & Automation Magazine, 2007, 14(1):43-52 https://core.ac.uk/display/4884512
    [2] 贺鑫元, 马书根, 李斌, 王越超.可重构星球探测机器人的机构设计.机械工程学报, 2005, 41(12):190-195 doi: 10.3321/j.issn:0577-6686.2005.12.038

    He Xin-Yuan, Ma Shu-Gen, Li Bin, Wang Yue-Chao. Mechanical design of reconfigurable planetary rover. Chinese Journal of Mechanical Engineering, 2005, 41(12):190-195 doi: 10.3321/j.issn:0577-6686.2005.12.038
    [3] Bhat P, Kuffner J, Goldstein S, Srinivasa S. Hierarchical motion planning for self-reconfigurable modular robots. In:Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China:IEEE, 2006. 886-891
    [4] Dewey D J, Ashley-Rollman M P, De Rosa M, Goldstein S C, Mowry T C, Srinivasa S S, Pillai P, Campbell J. Generalizing metamodules to simplify planning in modular robotic systems. In:Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice, France:IEEE, 2008. 1338-1345
    [5] Vassilvitskii S, Kubica J, Rieffel E, Suh J, Yim M. On the general reconfiguration problem for expanding cube style modular robots. In:Proceedings of the 2002 IEEE International Conference on Robotics and Automation. Washington, USA:IEEE, 2002. 801-808
    [6] Yoshida E, Murata S, Kamimura A, Tomita K, Kurokawa H, Kokaji S. A motion planning method for a self-reconfigurable modular robot. In:Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Maui, HI, USA:IEEE, 2001. 590-597
    [7] Hu Y N, Ma S G, Li B, Wang M H, Wang Y C. Reconfiguration planning for wheel-manipulator robots. In:Proceedings of the 5th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems. Shenyang, China:IEEE, 2015. 529-534
    [8] Lavalle S M, Kuffner J J Jr. Randomized kinodynamic planning. The International Journal of Robotics Research, 2001, 20(5):378-400 doi: 10.1177/02783640122067453
    [9] Cherif M. Motion planning for all-terrain vehicles:a physical modeling approach for coping with dynamic and contact interaction constraints. IEEE Transactions on Robotics and Automation, 1999, 15(2):202-218 doi: 10.1109/70.760342
    [10] Tokekar P, Karnad N, Isler V. Energy-optimal trajectory planning for car-like robots. Autonomous Robots, 2014, 37(1):279-300 doi: 10.1007/s10514-014-9390-3
    [11] Howard T M, Kelly A. Optimal rough terrain trajectory generation for wheeled mobile robots. The International Journal of Robotics Research, 2007, 26(2):141-166 doi: 10.1177/0278364906075328
    [12] Burridge R R, Rizzi A A, Koditschek D E. Sequential composition of dynamically dexterous robot behaviors. The International Journal of Robotics Research, 1999, 18(6):534-555 doi: 10.1177/02783649922066385
    [13] 朱耀麟, 杨志海, 陈西豪.模型降阶方法研究.微计算机信息, 2011, 27(6):22-25 http://cdmd.cnki.com.cn/Article/CDMD-10246-1014446686.htm

    Zhu Yao-Lin, Yang Zhi-Hai, Chen Xi-Hao. Investigation on the methods of model reduction. Microcomputer Information, 2011, 27(6):22-25 http://cdmd.cnki.com.cn/Article/CDMD-10246-1014446686.htm
    [14] Yamane K. Systematic derivation of simplified dynamics for humanoid robots. In:Proceedings of the 12th IEEE-RAS International Conference on Humanoid Robots. Osaka, Japan:IEEE, 2012. 28-35
    [15] Ostrowski J P. Computing reduced equations for robotic systems with constraints and symmetries. IEEE Transactions on Robotics and Automation, 1999, 15(1):111-123 doi: 10.1109/70.744607
    [16] Tabuada P, Ames A D, Julius A, Pappas G J. Approximate reduction of dynamic systems. Systems & Control Letters, 2008, 57(7):538-545 http://www.sciencedirect.com/science/article/pii/S0167691107001752
    [17] 胡亚南, 马书根, 李斌, 王明辉, 王越超.轮手一体机器人群体构形的模块化动力学建模方法.机械工程学报, 2015, 51(1):24-33 http://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201501004.htm

    Hu Ya-Nan, Ma Shu-Gen, Li Bin, Wang Ming-Hui, Wang Yue-Chao. Modular dynamics modeling approach of group configuration of wheel-manipulator robots. Journal of Mechanical Engineering, 2015, 51(1):24-33 http://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201501004.htm
    [18] Lin F, Brandt R D, Sun J. Robust control of nonlinear systems:compensating for uncertainty. International Journal of Control, 1992, 56(6):1453-1459 doi: 10.1080/00207179208934374
    [19] Khalil H K.非线性系统(第3版).北京:电子工业出版社, 2012. 116-120

    Khalil H K. Nonlinear Systems (3rd Edition). Beijing:Publishing House of Electronics Industry, 2012. 116-120
    [20] Bardi M, Capuzzo-Dolcetta I. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Boston:Birkhäuser, 1997.
    [21] Crandall M G, Lions P L. Two approximations of solutions of Hamilton-Jacobi equations. Mathematics of Computation, 1984, 43:1-19 doi: 10.1090/S0025-5718-1984-0744921-8
    [22] Osher S, Fedkiw R. Level Set Methods and Dynamic Implicit Surfaces (Applied Mathematical Sciences). New York:Springer, 2003.
    [23] Tsai Y H R, Cheng L T, Osher S, Zhao H K. Fast sweeping algorithms for a class of Hamilton-Jacobi equations. SIAM Journal on Numerical Analysis, 2003, 41(2):673-694 doi: 10.1137/S0036142901396533
    [24] Takei R, Tsai R. Optimal trajectories of curvature constrained motion in the Hamilton-Jacobi formulation. Journal of Scientific Computing, 2013, 54(2-3):622-644 doi: 10.1007/s10915-012-9671-y
    [25] Solis J M, Longoria R G. Modeling track-terrain interaction for transient robotic vehicle maneuvers. Journal of Terramechanics, 2008, 45(3):65-78 doi: 10.1016/j.jterra.2008.07.003
    [26] Huang M H, Orin D E. Dynamic simulation of actively-coordinated wheeled vehicle systems on uneven terrain. In:Proceedings of the 2001 IEEE International Conference on Robotics and Automation. Seoul, South Korea:IEEE, 2001. 779-786
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1552
  • HTML全文浏览量:  343
  • PDF下载量:  589
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-12
  • 录用日期:  2016-06-14
  • 刊出日期:  2017-08-20

目录

    /

    返回文章
    返回