-
摘要: 针对多模型自适应混合控制的性能依赖系统参数估计误差大小的缺点,本文提出了基于切换机制的多模型自适应混合控制.首先对被控系统进行辨识,然后根据参数估计值进行判断.当参数估计值不在最优参数集内时,实行切换策略,重置参数估计值到最优参数集内,用以减小暂态误差,提高暂态性能;当参数估计值在最优参数集内时,实行混合控制,用以平滑过渡过程.文中给出了系统的稳定性和收敛性的证明,最后的仿真实验结果验证了所提出方法的可行性.Abstract: As the performance of the multiple model adaptive mixing control depends on the error of parameter estimates, a multiple model adaptive mixing control based on switching is proposed in this paper. The system is identified first and parameter estimates are obtained. When the parameter estimates are not in the optimal parameter set, switching control is applied to reset the parameter estimates in the optimal parameter set. As a result, the transient error gets smaller and the transient performance improves. When the parameter estimates are in the optimal parameter set, mixing control is used to smooth the transition process. In addition, the analysis of the stability and convergence is presented. Finally, the feasibility of the method is verified in the simulation.
-
Key words:
- Multiple models /
- adaptive /
- mixing control /
- switching control
-
-
[1] Narendra K S, Balakrishnan J. Improving transient response of adaptive control systems using multiple models and switching. IEEE Transactions on Automatic Control, 1994, 39(9):1861-1866 doi: 10.1109/9.317113 [2] Han Z, Narendra K S. New concepts in adaptive control using multiple models. IEEE Transactions on Automatic Control, 2012, 57(1):78-89 doi: 10.1109/TAC.2011.2152470 [3] Narendra K S, Cheng X. Adaptive control of discrete-time systems using multiple models. IEEE Transactions on Automatic Control, 2000, 45(9):1669-1686 doi: 10.1109/9.880617 [4] Huang M, Wang X, Wang Z L. Multiple model adaptive control for a class of linear-bounded nonlinear systems. IEEE Transactions on Automatic Control, 2015, 60(1):271-276 doi: 10.1109/TAC.2014.2323161 [5] 黄淼, 王昕, 王振雷. 非线性多变量零阶接近有界系统的多模型自适应控制. 自动化学报, 2014, 40(9):2057-2065Huang Miao, Wang Xin, Wang Zhen-Lei. Multiple model adaptive control for a class of nonlinear multi-variable systems with zero-order proximity boundedness. Acta Automatica Sinica, 2014, 40(9):2057-2065 [6] Zhang W C, Li Q, Zhang Y Z, Meng Y. Robust multiple model adaptive control of uncertain stochastic plant with improved weighting algorithm. In:Proceedings of the 2014 IEEE International Conference on Information and Automation. Hailar, China:IEEE, 2014. 536-541 http://www.baidu.com/link?url=dd6sD_mQrVH4_qYUxj88ZnbBoPrBsOy3WxzwrZE4r_m30BO-DmSw-WsnpsspVjejGUcDdxH7oMB4lXNNOYlld_IyrjALHiidtJJbHYzzcixrfK5DwzFkCr-ZC1lhunKvfGndZfaUrDZQ3RohFoXM8QbHdKc-9eWxgTfbdSsYuKzoEFXhwgIypcTqDFFbwpoopvv7_SW56nraqviUPt3bjsGDXVtEr-QCaG8UYEJzLNEdwmiAba-L8txSE0A06ogQbH6d9M_P63R-i8CN8Y2x4Zo4m3YpsXCNXFaXKaSpBwGGyMg5pFJ-CfBznho71S68gC0bO8yxxaqNPHyWzfM1FgCYNmpgzX1bp0KySYzLgEqiP8St-4DG5dMvapZvcrBo&wd=&eqid=8a180b790003e8fa000000055882b04d [7] Kuipers M, Ioannou P A. Multiple model adaptive control with mixing:a pedagogical example. In:Proceedings of the 47th IEEE Conference on Decision and Control. Cancun, Mexico:IEEE, 2008. 3239-3244 http://cn.bing.com/academic/profile?id=15067c41e16a58e01925ffc68cdefdf3&encoded=0&v=paper_preview&mkt=zh-cn [8] Kuipers M, Ioannou P A. Practical robust adaptive control:benchmark example. In:Proceedings of the 2008 American Control Conference. Seattle, Washington, USA:IEEE, 2008. 5168-5173 http://www.baidu.com/link?url=jE05LoYuU-rGPV1HZ5igh3Oty6Pp-6qtfBRRLda8mIYfumEuDa-13818ORj8-6tkueYkVLpvpc-1vLKlk_fAMnaD3jT47TKZTQC1vLT3laZzylCcTv4e9wP4TSQxWPdC20-WOZgvfVUI2PlZgtMPqzhSxPnTY1UC4uo6e36EKxmvVkRsKbiy0YgnhpTeKDhItum-cKSToM7K42ViXfUXN6bLAY6m7k6_MnRP-Ubx7UuoRCZFoiIFI_bM3rJ1o_wn2uIP4p5xFuEpVKh_XV14CUQvUoVmIJIWnFbze33YfpG-HTGtDlEzR6VN2G5CH6er&wd=&eqid=9d9ea3390003d9c9000000055882b099 [9] Kuipers M, Ioannou P A. Multiple model adaptive control with mixing. IEEE Transactions on Automatic Control, 2010, 55(8):1822-1836 doi: 10.1109/TAC.2010.2042345 [10] Baldi S, Ioannou P A, Mosca E. Multiple model adaptive mixing control:the discrete-time case. IEEE Transactions on Automatic Control, 2012, 57(4):1040-1045 doi: 10.1109/TAC.2011.2169620 [11] Baldi S, Ioannou P A, Mosca E. Discrete-time adaptive mixing control with stability-preserving interpolation:the output regulation problem. In:Proceedings of the 18th IFAC World Congress. Milan, Italy:IFAC, 2011. 102-107 http://cn.bing.com/academic/profile?id=786fdc334e06c09b13e64a6b5c14f29d&encoded=0&v=paper_preview&mkt=zh-cn [12] Kuipers M. Multiple Model Adaptive Control with Mixing[Ph.D. dissertation], University of Southern California, USA, 2009. [13] Yaesh I, Shaked U. A transfer function approach to the problems of discrete-time systems:H∞-optimal linear control and filtering. IEEE Transactions on Automatic Control, 1991, 36(11):1264-1271 doi: 10.1109/9.100935 [14] 屈百达, 吕艳辉, 黄小原. 非线性摄动离散系统H∞鲁棒控制. 控制理论与应用, 2000, 17(2):309-311 http://www.baidu.com/link?url=rdptDLAFIZSEmCwTpZoEsnsmxUJ3X0SjoL0BL_Ll76ICsfegpJsPMgQ85cogW_vBH4VqCWiHLgMwSWrN8P4Waiemq6Bh_PUs7dXDo9SKQFk-EySjn0v5-J-O7sCBtHHL7upOUWhUfvRpqyfnHdmfuOoJBvdI_Z2_Y3Dhg8MC1pW8rpcmZ-OcrjZT2uUO25xc85M-1qDRbhjzp6PxchA3_y43Y7W6CkinPlZ94VpJDax1lkSvJ6BL81ORyo8D0hezRfveNiJzs_PWlPqZf15J00iQ-5IMUfDBrsDRnkLlZSTE4aZPM6QnceInublv8V_az-6DTV_w_tNXhpmbllxXXol8VIYcwTW6l7b2Bj6TZDZaF82MemO8txX_2Y8AAxYc5tICkDZPQnbf3RwBYfCojnCLD28ee6mn_2rRkYCgbsa&wd=&eqid=a475e9cd00041c2d000000055882b0baQu Bai-Da, Lv Yan-Hui, Huang Xiao-Yuan. Robust H∞ control for discrete-time systems with nonlinear perturbations. Control Theory and Applications, 2000, 17(2):309-311 http://www.baidu.com/link?url=rdptDLAFIZSEmCwTpZoEsnsmxUJ3X0SjoL0BL_Ll76ICsfegpJsPMgQ85cogW_vBH4VqCWiHLgMwSWrN8P4Waiemq6Bh_PUs7dXDo9SKQFk-EySjn0v5-J-O7sCBtHHL7upOUWhUfvRpqyfnHdmfuOoJBvdI_Z2_Y3Dhg8MC1pW8rpcmZ-OcrjZT2uUO25xc85M-1qDRbhjzp6PxchA3_y43Y7W6CkinPlZ94VpJDax1lkSvJ6BL81ORyo8D0hezRfveNiJzs_PWlPqZf15J00iQ-5IMUfDBrsDRnkLlZSTE4aZPM6QnceInublv8V_az-6DTV_w_tNXhpmbllxXXol8VIYcwTW6l7b2Bj6TZDZaF82MemO8txX_2Y8AAxYc5tICkDZPQnbf3RwBYfCojnCLD28ee6mn_2rRkYCgbsa&wd=&eqid=a475e9cd00041c2d000000055882b0ba 期刊类型引用(9)
1. 刘鑫屏,陈艺文,董子健. 基于混合算法下RBF神经网络的执行机构非线性特性在线辨识与补偿. 动力工程学报. 2024(05): 792-801 . 百度学术
2. 刘切,李俊豪,王浩,曾建学,柴毅. 不确定性环境下维纳模型的随机变分贝叶斯学习. 自动化学报. 2024(06): 1185-1198 . 本站查看
3. 谌卓玲,卢绍文,张亚军,潘庆玉. 工业过程指标的平滑交替辨识预报算法. 控制理论与应用. 2024(09): 1539-1547 . 百度学术
4. 陶金梅,牛宏,张亚军,李旭生. 基于随机配置网络的非线性系统智能建模方法. 控制与决策. 2022(10): 2559-2564 . 百度学术
5. 李荟,王福利,李鸿儒. 电熔镁炉熔炼过程异常工况识别及自愈控制方法. 自动化学报. 2020(07): 1411-1419 . 本站查看
6. 牛宏,陶金梅,张亚军. 一种新的数据驱动的非线性自适应切换控制方法. 自动化学报. 2020(11): 2359-2366 . 本站查看
7. 徐宝昌,张华,王金山. 基于径向基函数的非线性系统近似偏最小一乘准则辨识算法. 化工学报. 2019(02): 653-660 . 百度学术
8. 魏萃,柴天佑,贾瑶,王良勇. 补偿信号法驱动的Pendubot自适应平衡控制. 自动化学报. 2019(06): 1146-1156 . 本站查看
9. 董斌,刘艳梅,宋进良,韩洪刚,任川. 基于非线性时变参数的红外校验评估技术研究. 自动化仪表. 2017(10): 99-102 . 百度学术
其他类型引用(12)
-