2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度学习和层次语义模型的极化SAR分类

石俊飞 刘芳 林耀海 刘璐

石俊飞, 刘芳, 林耀海, 刘璐. 基于深度学习和层次语义模型的极化SAR分类. 自动化学报, 2017, 43(2): 215-226. doi: 10.16383/j.aas.2017.c150660
引用本文: 石俊飞, 刘芳, 林耀海, 刘璐. 基于深度学习和层次语义模型的极化SAR分类. 自动化学报, 2017, 43(2): 215-226. doi: 10.16383/j.aas.2017.c150660
SHI Jun-Fei, LIU Fang, LIN Yao-Hai, LIU Lu. Polarimetric SAR Image Classification Based on Deep Learning and Hierarchical Semantic Model. ACTA AUTOMATICA SINICA, 2017, 43(2): 215-226. doi: 10.16383/j.aas.2017.c150660
Citation: SHI Jun-Fei, LIU Fang, LIN Yao-Hai, LIU Lu. Polarimetric SAR Image Classification Based on Deep Learning and Hierarchical Semantic Model. ACTA AUTOMATICA SINICA, 2017, 43(2): 215-226. doi: 10.16383/j.aas.2017.c150660

基于深度学习和层次语义模型的极化SAR分类

doi: 10.16383/j.aas.2017.c150660
基金项目: 

国家自然科学基金青年科学基金项目 31300473

教育部“长江学者和创新团队发展计划” IRT1170

国家重点基础研究发展计划(973计划) 2013CB329402

国家自然科学基金 61572383

国家自然科学基金 61571342

福建省自然科学基金 2014J01073

高等学校学科创新引智计划 B07048

国家自然科学基金 61573267

详细信息
    作者简介:

    刘芳 西安电子科技大学计算机学院教授.1984年获得西安交通大学计算机科学与技术专业学士学位, 1995年获得西安电子科技大学计算机学院硕士学位.主要研究方向包括图像和信号处理, SAR图像处理, 多尺度几何分析, 学习理论和算法, 数据挖掘.E-mail:f63liu@163.com

    林耀海 福建农林大学计算机与信息学院讲师.主要研究方向有图像处理, 智能信号处理.E-mail:lyh953@qq.com

    刘璐 西安理工大学计算机信息与工程学院讲师.2015年获得西安电子科技大学电子工程学院博士学位.主要研究方向为极化SAR图像分类.E-mail:liulu0613@163.com

    通讯作者:

    SHI Jun-Fei Lecturer at the School of Computer Science and Technology, Xi'an University of Technology. She received her Ph. D. degree from the School of Computer Science and Technology, Xidian University in 2016. She received her bachelor degree from the School of Computer Science and Technology, Henan Normal University in 2009. Her research interest covers polarimetric SAR image classification, semantic model, and computer vision. Corresponding author of this paper

Polarimetric SAR Image Classification Based on Deep Learning and Hierarchical Semantic Model

Funds: 

Youth Fund of National Natural Science Foundation of China 31300473

the Program for Cheung Kong Scholars and Innovative Research Team in University IRT1170

National Basic Research Program of China (973 Program) 2013CB329402

Natural Science Foundation of China 61572383

Natural Science Foundation of China 61571342

Natural Science Foundation of Fujian Province 2014J01073

the Fund for Foreign Scholars in University Research and Teaching Programs B07048

Natural Science Foundation of China 61573267

More Information
    Author Bio:

    Professor at the School of Computer Science, Xidian University and Technology. She received her bachelor degree in computer science and technology from Xi'an Jiaotong University in 1984 and master degree in computer science and technology from Xidian University in 1995. Her research interest covers synthetic aperture radar image processing, multiscale geometry analysis, learning theory and algorithms, and data mining

    Lecturer at the School of Computer Science and Technology, Fujian Agriculture and Forest University. His research interest covers image processing and intelligent signal processing

    Lecturer at the School of Computer Science and Technology, Xi'an University of Technology. She received her Ph. D. degree from the School of Electronic Engineering, Xidian University in 2015. Her main research interest is polarimetric SAR image classification

  • 摘要: 针对复杂场景的极化合成孔径雷达(Synthetic aperture radar,SAR)图像,堆叠自编码模型能够自动学习高层特性,有效表示城区、森林等复杂地物的结构,然而,却难以保持图像的边界和细节.为了克服该缺点,本文结合深度自编码器和极化层次语义模型(Polarimetric hierarchical semantic model,PHSM),提出了新的无监督的极化SAR图像分类算法.该方法根据极化层次语义模型,将复杂的极化SAR图像划分为聚集、匀质和结构三大区域.对聚集区域,采用堆叠自编码模型进行高层特征表示,并构造字典得到稀疏特征进行分类;对匀质区域,采用层次模型进行分类;对于结构区域,进行线目标保留和边界定位.实验结果表明,该算法通过不同的分类策略优势互补,能够得到区域一致性好且边界保持的分类结果.
    1)  本文责任编委 柯登峰
  • 图  1  单层自动编码器的网络结构

    Fig.  1  Network structure of single-level auto-encoder

    图  2  层次语义模型示例图

    Fig.  2  Example of hierarchical semantic model

    图  3  本文算法示意图

    Fig.  3  Algorithm framework of the proposed method

    图  4  聚集区域分类示例图

    Fig.  4  Example of classification of aggregated regions

    图  5  空间极化分类过程示意图

    Fig.  5  Procedure of spatial-polarimetric classification

    图  6  网络结构设计示意图

    Fig.  6  Example of the network structure

    图  7  合成极化SAR图像分类结果图

    Fig.  7  Classification maps of synthetic PolSAR image

    图  8  San Francisco地区极化SAR图像分类结果图

    Fig.  8  Classification maps of the PolSAR image on San Francisco area

    图  9  Ottawa地区极化SAR图像分类结果图c

    Fig.  9  Classification maps of the PolSAR image on Ottawa area

    图  10  西安地区极化SAR图像分类结果图

    Fig.  10  Classification maps of synthetic PolSAR image

    图  11  图像块大小对分类精度的影响

    Fig.  11  Effect of block size on classification accuracy

    图  12  不同层数网络对分类精度的影响

    Fig.  12  Effect of network level on classification accuracy

    表  1  不同算法的分类结果统计(%)

    Table  1  Classification accuracies for different algorithms (%)

    Wishart Wishart MRF SAE 本文算法
    城区 61.33 92.47 96.11 92.94
    海洋 96.05 99.23 93.64 97.09
    森林 93.52 58.52 95.79 98.13
    平均精度 83.63 83.41 95.18 96.05
    Kappa系数 78.48 76.75 84.64 94.30
    下载: 导出CSV

    表  2  文中算法的混淆矩阵(%)

    Table  2  Confusion matrix for the proposed method (%)

    城区 海洋 森林
    城区 92.94 2.70 4.36
    海洋 0.40 97.09 2.51
    森林 0.32 1.55 98.13
    下载: 导出CSV

    表  3  不同算法的运行时间(s)

    Table  3  Running time for different algorithms (s)

    Wishart Wishart MRF SAE 本文算法
    时间 9.79 68.41 109.55 98.82
    下载: 导出CSV
  • [1] Cloude S R, Pottier E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1):68-78 doi: 10.1109/36.551935
    [2] Zhao L W, Zhou X G, Jiang Y M, Kuang G Y. Iterative classification of polarimetric SAR image based on the freeman decomposition and scattering entropy. In:Proceedings of the 1st Asian and Pacific Conference on Synthetic Aperture Radar, APSAR 2007. Huangshan, China:IEEE, 2007. 473-476 http://ieeexplore.ieee.org/abstract/document/4418653/
    [3] Lee J S, Grunes M R. Classification of multi-look polarimetric SAR data based on complex Wishart distribution. In:Proceedings of the National Telesystems Conference. Washington D.C., USA:IEEE, 1992. 7/21-7/24 http://ieeexplore.ieee.org/abstract/document/267879/
    [4] Beaulieu J M, Touzi R. Segmentation of textured polarimetric SAR scenes by likelihood approximation. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(10):2063-2072 doi: 10.1109/TGRS.2004.835302
    [5] Shan Z L, Wang C, Zhang H, Wu F. Change detection in urban areas with high resolution SAR images using second kind statistics based G0 distribution. In:Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Honolulu, HI:IEEE, 2010. 4600-4603 http://ieeexplore.ieee.org/abstract/document/5654435/
    [6] Bombrun L, Vasile G, Gay M, Totir F. Hierarchical segmentation of polarimetric SAR images using heterogeneous clutter models. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(2):726-737 doi: 10.1109/TGRS.2010.2060730
    [7] Lee J S, Grunes M R, Ainsworth T L, Du L J, Schuler D L, Cloude S R. Unsupervised classification using polarimetric decomposition and the complex Wishart classifier. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5):2249-2258 doi: 10.1109/36.789621
    [8] Zhang B, Ma G R, Zhang Z, Qin Q Q. Region-based classification by combining MS segmentation and MRF for POLSAR images. Journal of Systems Engineering and Electronics, 2013, 24(3):400-409 doi: 10.1109/JSEE.2013.00048
    [9] Ersahin K, Cumming I, Yedlin M. Classification of polarimetric SAR data using spectral graph partitioning. In:Proceedings of the 2006 IEEE International Symposium on Geoscience and Remote Sensing. Denver, USA:IEEE, 2006. 1756-1759 http://ieeexplore.ieee.org/abstract/document/4241601/
    [10] Ersahin K, Cumming I G, Ward R K. Segmentation and classification of polarimetric SAR data using spectral graph partitioning. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1):164-174 doi: 10.1109/TGRS.2009.2024303
    [11] Niu X, Ban Y F. An adaptive contextual SEM algorithm for urban land cover mapping using multitemporal high-resolution polarimetric SAR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(4):1129-1139 doi: 10.1109/JSTARS.2012.2201448
    [12] Liu F, Shi J F, Jiao L C, Liu H Y, Yang S Y, Wu J, Hao H X, Yuan J L. Hierarchical semantic model and scattering mechanism based PolSAR image classiffication. Pattern Recognition, 2016, 59:325-342 doi: 10.1016/j.patcog.2016.02.020
    [13] Bengio Y. Learning deep architectures for AI. Foundations and Trends® in Machine Learning, 2009, 2(1):1-127 doi: 10.1561/2200000006
    [14] Bengio Y, Courville A, Vincent P. Representation learning:a review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8):1798-1828 doi: 10.1109/TPAMI.2013.50
    [15] Vincent P. A connection between score matching and denoising autoencoders. Neural Computation, 2011, 23(7):1661-1674 doi: 10.1162/NECO_a_00142
    [16] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks. In:Advances in Neural Information Processing Systems 25. Lake Tahoe, Nevada, USA:Curran Associates, Inc., 2012. 1097-1105 http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
    [17] Salakhutdinov R, Hinton G. An efficient learning procedure for deep Boltzmann machines. Neural Computation, 2012, 24(8):1967-2006 doi: 10.1162/NECO_a_00311
    [18] Yildirim S, Cemgil T A, Aktar M, Ozakin Y, Ertuzun A. A Bayesian deconvolution approach for receiver function analysis. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12):4151-4163 doi: 10.1109/TGRS.2010.2050327
    [19] Lee H, Ekanadham C, Ng A Y. Sparse deep belief net model for visual area V2. In:Advances in Neural Information Processing Systems 20. Cambridge, MA:MIT Press, 2008. 873-880 http://papers.nips.cc/paper/3313-sparse-deep-belief-net-model-for-visual-area-v2
    [20] Hyvärinen A, Hoyer P O. A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images. Vision Research, 2001, 41(18):2413-2423 doi: 10.1016/S0042-6989(01)00114-6
    [21] Ito M, Komatsu H. Representation of angles embedded within contour stimuli in area V2 of macaque monkeys. The Journal of Neuroscience, 2004, 24(13):3313-3324 doi: 10.1523/JNEUROSCI.4364-03.2004
    [22] Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P A. Stacked denoising autoencoders:Learning useful representations in a deep network with a local denoising criterion. The Journal of Machine Learning Research, 2010, 11:3371-3408
    [23] Marr D. Vision:A Computational Investigation into the Human Representation and Processing of Visual Information. New York:W. H. Freeman and Company, 1982.
    [24] Guo C E, Zhu S C, Wu Y N. Primal sketch:integrating structure and texture. Computer Vision and Image Understanding, 2007, 106(1):5-19 doi: 10.1016/j.cviu.2005.09.004
    [25] Comaniciu D, Meer P. Mean shift:a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5):603-619 doi: 10.1109/34.1000236
    [26] Tirilly P, Claveau V, Gros P. Language modeling for bag-of-visual words image categorization. In:Proceedings of the 2008 International Conference on Content-based Image and Video Retrieval. New York, USA:ACM, 2008. 249-258
    [27] Ning J F, Zhang L, Zhang D, Wu C K. Interactive image segmentation by maximal similarity based region merging. Pattern Recognition, 2010, 43(2):445-456 doi: 10.1016/j.patcog.2009.03.004
    [28] Feng J L, Cao Z J, Pi Y M. Polarimetric contextual classification of PolSAR images using sparse representation and superpixels. Remote Sensing, 2014, 6(8):7158-7181 doi: 10.3390/rs6087158
    [29] Rignot E, Chellappa R. Segmentation of polarimetric synthetic aperture radar data. IEEE Transactions on Image Processing, 1992, 1(3):281-300 doi: 10.1109/83.148603
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  2852
  • HTML全文浏览量:  572
  • PDF下载量:  1213
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-21
  • 录用日期:  2016-04-18
  • 刊出日期:  2017-02-01

目录

    /

    返回文章
    返回