2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间绳系机器人目标抓捕鲁棒自适应控制器设计

黄攀峰 胡永新 王东科 孟中杰 刘正雄

黄攀峰, 胡永新, 王东科, 孟中杰, 刘正雄. 空间绳系机器人目标抓捕鲁棒自适应控制器设计. 自动化学报, 2017, 43(4): 538-547. doi: 10.16383/j.aas.2017.c150602
引用本文: 黄攀峰, 胡永新, 王东科, 孟中杰, 刘正雄. 空间绳系机器人目标抓捕鲁棒自适应控制器设计. 自动化学报, 2017, 43(4): 538-547. doi: 10.16383/j.aas.2017.c150602
HUANG Pan-Feng, HU Yong-Xin, WANG Dong-Ke, MENG Zhong-Jie, LIU Zheng-Xiong. Capturing the Target for a Tethered Space Robot Using Robust Adaptive Controller. ACTA AUTOMATICA SINICA, 2017, 43(4): 538-547. doi: 10.16383/j.aas.2017.c150602
Citation: HUANG Pan-Feng, HU Yong-Xin, WANG Dong-Ke, MENG Zhong-Jie, LIU Zheng-Xiong. Capturing the Target for a Tethered Space Robot Using Robust Adaptive Controller. ACTA AUTOMATICA SINICA, 2017, 43(4): 538-547. doi: 10.16383/j.aas.2017.c150602

空间绳系机器人目标抓捕鲁棒自适应控制器设计

doi: 10.16383/j.aas.2017.c150602
基金项目: 

国家自然科学基金 61005062

国家自然科学基金 60805034

国家自然科学基金 11272256

详细信息
    作者简介:

    胡永新 西北工业大学航天学院博士研究生.主要研究方向为空间绳系机器人动力学与控制, 空间绳系装置对非合作目标抓捕控制. E-mail: hu.yongxin@163.com

    王东科 西北工业大学博士.主要研究方向为空间绳系系统动力学建模, 非线性系统自适应控制. E-mail: wdkly.student@gmail.com

    孟中杰 博士, 西北工业大学航天学院副教授.主要研究方向为空间绳系机器人动力学与控制, 智能飞行器系统. E-mail: mengzhongjie@nwpu.edu.cn

    刘正雄 博士, 西北工业大学航天学院讲师.主要研究方向为空间遥操作, 多体动力学和人机交互.E-mail:liuzhengxiong@nwpu.edu.cn

    通讯作者:

    黄攀峰 西北工业大学航天学院教授.主要研究方向为空间机器人, 绳系空间机器人, 智能控制, 机器视觉, 空间遥操作.E-mail:pfhuang@nwpu.edu.cn

Capturing the Target for a Tethered Space Robot Using Robust Adaptive Controller

Funds: 

National Natural Science Foundation of China 61005062

National Natural Science Foundation of China 60805034

National Natural Science Foundation of China 11272256

More Information
    Author Bio:

    Ph. D. candidate at the School of Astronautics, Northwestern Polytechnical University. His research interest covers dynamic and control of tethered space robot, and control of the uncooperative target captured via tethered device

    Ph. D. at Northwestern Polytechnical University. His research interest covers dynamic modeling for space tethered system, and adaptive control for nonlinear systems

    Ph. D., associate professor at the School of Astronautics, Northwestern Polytechnical University. His research interest covers dynamics and control of tethered space robots, and intelligent spacecraft system

    Ph. D., lecturer at the School of Astronautics, Northwestern Polytechnical University. His research interest covers space teleoperation, multi-body dynamics, and man-machine interaction

    Corresponding author: HUANG Pan-Feng Professor at the School of Astronautics, Northwestern Polytechnical University. His research interest covers space robotics, tethered space robotics, intelligent control, machine vision, and space teleoperation. Corresponding author of this paper
  • 摘要: 针对空间绳系机器人(Tethered space robot,TSR)目标抓捕过程中的稳定控制问题,建立空间绳系机器人系统模型,根据阻抗控制原理,设计基于位置的阻抗控制方法;针对空间绳系机器人系统的模型不确定性问题,利用神经网络对不确定性进行估计补偿,设计鲁棒项对空间系绳干扰和神经网络估计误差的影响进行抑制,在此基础上设计空间绳系机器人目标抓捕鲁棒自适应稳定控制器,并进行稳定性证明.最后对设计的控制器进行仿真验证.作为对比,对无鲁棒项自适应的稳定控制器进行仿真.仿真结果表明,设计的基于阻抗控制的鲁棒自适应控制可以实现对空间绳系机器人目标抓捕过程中的稳定控制,与无鲁棒项自适应的稳定控制器仿真结果相比,本文采用的鲁棒自适应控制方法可以有效地对不确定性进行补偿,控制过程中超调量更小,收敛时间更短,并且控制精度更高.
    1)  本文责任编委 孙富春
  • 图  1  空间绳系机器人目标抓捕示意图

    Fig.  1  Target capture of the TSR

    图  2  空间绳系机器人碰撞力示意图

    Fig.  2  The collision force of the TSR

    图  3  基于位置的空间绳系机器人阻抗控制

    Fig.  3  Block diagram of the impedance controller based on position for the TSR

    图  4  空间绳系机器人内环位置控制器框图

    Fig.  4  Block diagram of the inner loop position controller for the TSR

    图  5  姿态角跟踪误差变化曲线

    Fig.  5  The tracking deviation of the attitude angle

    图  6  面内角跟踪误差变化曲线

    Fig.  6  The tracking deviation of the in-plane angle

    图  7  系绳长度跟踪误差变化曲线

    Fig.  7  The tracking deviation of the tether length

    图  8  抓捕目标欧拉姿态角变化曲线

    Fig.  8  The Eular attitude angle of the target

    图  9  抓捕目标位置变化曲线

    Fig.  9  The position of the target

  • [1] Huang P F, Wang D K, Meng Z J, Zhang F. Adaptive postcapture backstepping control for tumbling tethered space robot-target combination. Journal of Guidance, Control and Dynamics, 2016, 39(1):150-156 doi: 10.2514/1.G001309
    [2] 黄攀峰, 孟中杰.空间绳系机器人技术.北京:中国宇航出版社, 2014. 91-139

    Huang Pan-Feng, Meng Zhong-Jie. Techniques in the Tethered Space Robot. Beijing:China Aerospace Press, 2014. 91-139
    [3] Williams P. Deployment/retrieval optimization for flexible tethered satellite systems. Nonlinear Dynamics, 2008, 52(1-2):159-179 doi: 10.1007/s11071-007-9269-3
    [4] Wen H, Zhu Z H, Jin D P, Hua H Y. Constrained tension control of a tethered space-tug system with only length measurement. Acta Astronautica, 2016, 119, 110-117
    [5] Aslanov V S, Ledkov A S. Dynamics of towed large space debris taking into account atmospheric disturbance. Acta Mechanica, 2014, 225(9):2685-2697 doi: 10.1007/s00707-014-1094-4
    [6] Chang I, Chung S J. Bio-inspired adaptive cooperative control of heterogeneous robotic networks. In:Proceedings of the 2009 AIAA Guidance, Navigation, and Control and Co-located Conferences. Chicago, USA:AIAA, 2009. 1-20
    [7] Huang P F, Zhang F, Xu X D, Meng Z J, Liu Z X, Hu Y X. Coordinated coupling control of tethered space robot using releasing characteristics of space tether. Advances in Space Research, 2016, 57(7):1528-1542 doi: 10.1016/j.asr.2016.01.005
    [8] 徐秀栋, 黄攀峰, 孟中杰.空间绳系机器人抓捕目标过程协同稳定控制.机器人, 2014, 36(1):100-110 http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201401014.htm

    Xu Xiu-Dong, Huang Pan-Feng, Meng Zhong-Jie. Coordinated stability control of tethered space robot for capturing the target. Robot, 2014, 36(1):100-110 http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201401014.htm
    [9] Wang D K, Huang P F, Meng Z J. Coordinated stabilization of tumbling targets using tethered space manipulators. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3):2420-2432 doi: 10.1109/TAES.2015.140530
    [10] 郭闻昊, 王天舒.空间机器人抓捕目标星碰撞前构型优化.宇航学报, 2015, 36(4):390-396 http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201504005.htm

    Guo Wen-Hao, Wang Tian-Shu. Pre-impact configuration optimization for a space robot capturing target satellite. Journal of Astronautics, 2015, 36(4):390-396 http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201504005.htm
    [11] 陈钢, 贾庆轩, 孙汉旭, 洪磊.空间机器人目标捕获过程中碰撞运动分析.机器人, 2010, 32(3):432-438 http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201003022.htm

    Chen Gang, Jia Qing-Xuan, Sun Han-Xu, Hong Lei. Analysis on impact motion of space robot in the object capturing process. Robot, 2010, 32(3):432-438 http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201003022.htm
    [12] Wee L B, Walker M W. On the dynamics of contact between space robots and configuration control for impact minimization. IEEE Transactions on Robotics and Automation, 1993, 9(5):581-591 doi: 10.1109/70.258051
    [13] 徐文福, 李成, 梁斌, 刘宇, 强文义.空间机器人捕获运动目标的协调规划与控制方法.自动化学报, 2009, 35(9):1216-1225 http://www.aas.net.cn/CN/abstract/abstract13569.shtml

    Xu Wen-Fu, Li Cheng, Liang Bin, Liu Yu, Qiang Wen-Yi. Coordinated planning and control method of space robot for capturing moving target. Acta Automatica Sinica, 2009, 35(9):1216-1225 http://www.aas.net.cn/CN/abstract/abstract13569.shtml
    [14] Aghili F. Pre-and post-grasping robot motion planning to capture and stabilize a tumbling/drifting free-floater with uncertain dynamics. In:Proceedings of the 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany:IEEE, 2013. 5461-5468
    [15] Yoshida K, Dimitrov D, Nakanishi H. On the capture of tumbling satellite by a space robot. In:Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China:IEEE, 2006. 4127-4132
    [16] Xu W F, Liu Y, Xu Y S. The coordinated motion planning of a dual-arm space robot for target capturing. Robotica, 2012, 30(5):755-771 doi: 10.1017/S0263574711001007
    [17] 徐文福, 孟得山, 徐超, 梁斌.自由漂浮空间机器人捕获目标的协调控制.机器人, 2013, 35(5):559-567 http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201305007.htm

    Xu Wen-Fu, Meng De-Shan, Xu Chao, Liang Bin. Coordinated control of a free-floating space robot for capturing a target. Robot, 2013, 35(5):559-567 http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201305007.htm
    [18] Nakanishi H, Yoshida K. Impedance control for free-flying space robots-basic equations and applications. In:Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China:IEEE, 2006. 3137-3142
    [19] Yoshida K, Nakanishi H, Ueno H, Inaba N, Nishimaki T, Oda M. Dynamics, control and impedance matching for robotic capture of a non-cooperative satellite. Advanced Robotics, 2004, 18(2):175-198 doi: 10.1163/156855304322758015
    [20] 魏承, 赵阳, 田浩.空间机器人捕获漂浮目标的抓取控制.航空学报, 2010, 31(3):632-637 http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201003036.htm

    Wei Cheng, Zhao Yang, Tian Hao. Grasping control of space robot for capturing floating target. Acta Aeronautica Et Astronautica Sinica, 2010, 31(3):632-637 http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201003036.htm
    [21] Leamy M J, Noor A K, Wasfy T M. Dynamic simulation of a tethered satellite system using finite elements and fuzzy sets. Computer Methods in Applied Mechanics and Engineering, 2001, 190(37-38):4847-4870 doi: 10.1016/S0045-7825(00)00352-2
    [22] 吴玉香, 王聪.基于确定学习的机器人任务空间自适应神经网络控制.自动化学报, 2013, 39(6):806-815 http://www.aas.net.cn/CN/abstract/abstract18106.shtml

    Wu Yu-Xiang, Wang Cong. Deterministic learning based adaptive network control of robot in task space. Acta Automatica Sinica, 2013, 39(6):806-815 http://www.aas.net.cn/CN/abstract/abstract18106.shtml
    [23] Xu W K, Cai C X, Zou Y. Neural-network-based robot time-varying force control with uncertain manipulator-environment system. Transactions of the Institute of Measurement and Control, 2014, 36(8):999-1009 doi: 10.1177/0142331214528971
  • 加载中
图(9)
计量
  • 文章访问数:  3021
  • HTML全文浏览量:  273
  • PDF下载量:  1178
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-22
  • 录用日期:  2016-05-16
  • 刊出日期:  2017-04-20

目录

    /

    返回文章
    返回