[1]
|
潘畅, 徐麟.中风偏瘫实用康复术图解.北京:中国中医药出版社, 1999.Pan Chang, Xu Lin. Diagram of Practical Rehabilitation for Stroke Patients with Hemiplegia. Beijing:China Press of Traditional Chinese Medicine, 1999.
|
[2]
|
Krebs H I, Volpe B T, Williams D, Celestino J, Charles S K, Lynch D, Hogan N. Robot-aided neurorehabilitation:a robot for wrist rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(3):327-335 doi: 10.1109/TNSRE.2007.903899
|
[3]
|
Krebs H I, Hogan N, Volpe B T, Aisen M L, Edelstein L, Diels C. Overview of clinical trials with MIT-MANUS:a robot-aided neuro-rehabilitation facility. Technology and Health Care, 1999, 7(6):419-423 https://www.researchgate.net/publication/12649007_Overview_of_clinical_trials_with_MIT-MANUS_A_robot-aided_neuro-_rehabilitation_facility
|
[4]
|
Loureiro R, Amirabdollahian F, Topping M, Driessen B, Harwin W. Upper limb robot mediated stroke therapy-GENTLE/s approach. Autonomous Robots, 2003, 15(1):35-51 doi: 10.1023/A:1024436732030
|
[5]
|
Burgar C G, Lum P S, Shor P C, Van der Loos H F M. Development of robots for rehabilitation therapy:the Palo Alto VA/Stanford experience. Journal of Rehabilitation Research and Development, 2000, 37(6):663-673 https://www.researchgate.net/publication/12015148_Development_of_robots_for_rehabilitation_therapy_The_Palo_Alto_VAStanford_experience
|
[6]
|
Nef T, Guidalic M, Riener R. ARMin III-arm therapy exoskeleton with an ergonomic shoulder actuation. Applied Bionics and Biomechanics, 2009, 6(2):127-142 doi: 10.1155/2009/962956
|
[7]
|
Colombo G, Joerg M, Schreier R, Dietz V. Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research and Development, 2000, 37(6):693-700 http://www.academia.edu/15095877/Treadmill_training_of_paraplegic_patients_using_a_robotic_orthosis
|
[8]
|
Zanotto D, Stegall P, Agrawal S K. ALEX Ⅲ:a novel robotic platform with 12 DOFs for human gait training. In:Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA). Karlsruhe, Germany:IEEE, 2013. 3914-3919
|
[9]
|
Freivogel S, Schmalohr D, Mehrholz J. Improved walking ability and reduced therapeutic stress with an electromechanical gait device. Journal of Rehabilitation Medicine, 2009, 41(9):734-739 doi: 10.2340/16501977-0422
|
[10]
|
Schmidt H, Krüger J, Hesse S. HapticWalker-haptic foot device for gait rehabilitation. Human Haptic Perception:Basics and Applications. Basel:Springer, 2008. 501-511
|
[11]
|
Susko T G. MIT Skywalker:A Novel Robot for Gait Rehabilitation of Stroke and Cerebral Palsy Patients[Ph.D. dissertation], Massachusetts Institute of Technology, USA, 2015.
|
[12]
|
Maciejasz P, Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, Leonhardt S. A survey on robotic devices for upper limb rehabilitation. Journal of NeuroEngineering and Rehabilitation, 2014, 11(1):Article No.3
|
[13]
|
Krebs H I. Rehabilitation robotics:an academic engineer perspective. In:Proceedings of the 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS). Boston, Massachusetts, USA:IEEE, 2011. 6709-6712
|
[14]
|
Lotze M, Braun C, Birbaumer N, Anders S, Cohen L G. Motor learning elicited by voluntary drive. Brain, 2003, 126(4):866-872 doi: 10.1093/brain/awg079
|
[15]
|
丁其川, 熊安斌, 赵新刚, 韩建达.基于表面肌电的运动意图识别方法研究及应用综述.自动化学报, 2016, 42(1):13-25) http://www.aas.net.cn/CN/abstract/abstract18792.shtmlDing Qi-Chuan, Xiong An-Bin, Zhao Xin-Gang, Han Jian-Da. A review on researches and applications of sEMG-based motion intent recognition methods. Acta Automatica Sinica, 2016, 42(1):13-25( http://www.aas.net.cn/CN/abstract/abstract18792.shtml
|
[16]
|
Van Dijk W, Van der Kooij H, Koopman B, and Van Asseldonk E H. Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking. In:Proceedings of the 2013 IEEE International Conference on Rehabilitation Robotics. Seattle, Washington, USA:IEEE, 2013. 1-6
|
[17]
|
Shirzad N and Van der Loos H. Error amplification to promote motor learning and motivation in therapy robotics. In:Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2012. 3907-3910
|
[18]
|
Duschau-Wicke A, Von Zitzewitz J, CaprezA, Luenenburger L, Riener R. Path control:A method for patient-cooperative robot-aided gait rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineerin, 2010, 18(1):38-48 doi: 10.1109/TNSRE.2009.2033061
|
[19]
|
del-Ama A J, Gil-Agudo Á, Pons J L, Moreno J C. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton. Journal of NeuroEngineering and Rehabilitation, 2014, 11(1):Article No.27
|
[20]
|
Hillier S, Immink M, Thewlis D. Assessing proprioception:a systematic review of possibilities. Neurorehabilitation and Neural Repair, 2015, 29(10):933-949 doi: 10.1177/1545968315573055
|
[21]
|
Neckel N D, Blonien N, Nichols D, Hidler J. Abnormal joint torque patterns exhibited by chronic stroke subjects while walking with a prescribed physiological gait pattern. Journal of NeuroEngineering and Rehabilitation, 2008, 5(3):Article No.19
|
[22]
|
Latash M, Zatsiorsky V M. Biomechanics and Motor Control:Defining Central Concepts. Cambridge:Academic Press, 2015.
|
[23]
|
Awai L, Curt A. Intralimb coordination as a sensitive indicator of motor-control impairment after spinal cord injury. Frontiers in Human Neuroscience, 2014, 8(6):Article No.148
|
[24]
|
Clarkson H M. Joint Motion and Function Assessment:A Research-Based Practical Guide. Philadelphia:Lippincott Williams and Wilkins, 2005.
|
[25]
|
Riener R, Lünenburger L, Maier I C, Colombo G, Dietz V. Locomotor training in subjects with sensori-motor deficits:an overview of the robotic gait orthosis lokomat. Journal of Healthcare Engineering, 2010, 1(2):197-216 doi: 10.1260/2040-2295.1.2.197
|
[26]
|
Banala S K, Kim S H, Agrawal S K, Scholz J P. Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2009, 17(1):2-8 doi: 10.1109/TNSRE.2008.2008280
|
[27]
|
Veneman J F, Kruidhof R, Hekman E E G, Ekkelenkamp R, Van Asseldonk E H F, Van Der Kooij H. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(3):379-386 doi: 10.1109/TNSRE.2007.903919
|
[28]
|
何清华, 黄素平, 黄志雄.智能轮椅的研究现状和发展趋势.机器人技术与应用, 2003, (2):12-16) http://www.cnki.com.cn/Article/CJFDTOTAL-JIQI200302004.htmHe Qing-Hua, Huang Su-Ping, Huang Zhi-Xiong. The research status and development trend of intelligent wheelchair. Robot Technology and Application, 2003, (2):12-16( http://www.cnki.com.cn/Article/CJFDTOTAL-JIQI200302004.htm
|
[29]
|
Yanco H A. Wheelesley:a robotic wheelchair system:indoor navigation and user interface. Assistive technology and artificial intelligence. Berlin Heidelberg:Springer, 1998. 256-268
|
[30]
|
Christensen H V, Garcia J C. Infrared non-contact head sensor for control of wheelchair movements. In:Proceedings of the 8th European Conference for the Advancement of Assistive Technology in Europe. Lille, France, 2005. 336-340
|
[31]
|
Matsumoto O, Komoriya K, Hatase T, Nishimura H. Autonomous traveling control of the "TAO Aicle" intelligent wheelchair. In:Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China:IEEE, 2006. 4322-4327
|
[32]
|
Lu T, Yuan K, Zou W, Hu H S. Study on navigation strategy of intelligent wheelchair in narrow spaces. In:Proceedings of the 6th World Congress on Intelligent Control and Automation. Dalian, China:IEEE, 2006. 9252-9256
|
[33]
|
Jia P, Hu H H, Lu T, Yuan K. Head gesture recognition for hands-free control of an intelligent wheelchair. Industrial Robot:An International Journal, 2007, 34(1):60-68 http://www.citeulike.org/article/1047677
|
[34]
|
Zou W, Ye A X, Lu T, Ren Y N, Xu Z D, Yuan K. Contour detection and localization of intelligent wheelchair for parking into and docking with U-shape bed. In:Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics. Karon Beach, Phuket:IEEE, 2011. 378-383
|
[35]
|
曾翔.面向助老助残的智能轮椅开发[硕士学位论文], 上海交通大学, 中国, 2007) http://cdmd.cnki.com.cn/Article/CDMD-10248-2007052603.htmZeng Xiang. Developing Smart Wheelchair for the Handicapped and the Elderly[Master dissertation], Shanghai Jiao Tong University, China, 2007 http://cdmd.cnki.com.cn/Article/CDMD-10248-2007052603.htm
|
[36]
|
王丽军, 王景川, 陈卫东.动态环境下智能轮椅的路径规划与导航.上海交通大学学报, 2010, 44(11):1524-1528) http://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201011010.htmWang Li-Jun, Wang Jing-Chun, Chen Wei-Dong. Path planning and navigation for intelligent wheelchair in dynamic environments. Journal of Shanghai Jiaotong University, 2010, 44(11):1524-1528( http://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201011010.htm
|
[37]
|
张毅, 张辉, 罗元, 胡豁生.采用Emotiv感知的智能轮椅运动控制的研究.重庆邮电大学学报(自然科学版), 2012, 24(3):358-362) http://www.cnki.com.cn/Article/CJFDTOTAL-CASH201203019.htmZhang Yi, Zhang Hui, Luo Yuan, Hu Huo-Sheng. Motion control for intelligent wheelchair using Emotiv perception. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2012, 24(3):358-362 http://www.cnki.com.cn/Article/CJFDTOTAL-CASH201203019.htm
|
[38]
|
张毅, 张姣, 罗元.基于手势跟踪的智能轮椅控制系统.重庆邮电大学学报(自然科学版), 2011, 23(6):741-745) http://www.cnki.com.cn/Article/CJFDTOTAL-CASH201106019.htmZhang Yi, Zhang Jiao, Luo Yuan. Intelligent wheelchair control system based on hand tracking. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2011, 23(6):741-745( http://www.cnki.com.cn/Article/CJFDTOTAL-CASH201106019.htm
|
[39]
|
罗元, 谢彧, 张毅.基于Kinect传感器的智能轮椅手势控制系统的设计与实现.机器人, 2012, 34(1):110-113, 119) doi: 10.3724/SPJ.1218.2012.00110Luo Yuan, Xie Yu, Zhang Yi. Design and implementation of a gesture-driven system for intelligent wheelchairs based on the Kinect sensor. Robot, 2012, 34(1):110-113, 119 doi: 10.3724/SPJ.1218.2012.00110
|
[40]
|
Dubowsky S, Genot F, Godding S, Kozono H, Skwersky A, Yu H Y, Yu L S. PAMM-a robotic aid to the elderly for mobility assistance and monitoring:a "helping-hand" for the elderly. In:Proceedings of the 2000 IEEE International Conference on Robotics and Automation. San Francisco, CA:IEEE, 2000, 1:570-576
|
[41]
|
Bogue R. Exoskeletons and robotic prosthetics:a review of recent developments. Industrial Robot:An International Journal, 2009, 36(5):421-427 doi: 10.1108/01439910910980141
|
[42]
|
Nam Y, Koo B, Cichocki A, Choi S. GOM-face:GKP, EOG, and EMG-based multimodal interface with application to humanoid robot control. IEEE Transactions on Biomedical Engineering, 2014, 61(2):453-462 doi: 10.1109/TBME.2013.2280900
|
[43]
|
Phinyomark A, Phukpattaranont P, Limsakul C. Feature reduction and selection for EMG signal classification. Expert Systems with Applications, 2012, 39(8):7420-7431 doi: 10.1016/j.eswa.2012.01.102
|
[44]
|
Chan A D C, Englehart K B. Continuous myoelectric control for powered prostheses using hidden Markov models. IEEE Transactions on Biomedical Engineering, 2005, 52(1):121-124 doi: 10.1109/TBME.2004.836492
|
[45]
|
Chu J U, Moon I, Lee Y J, Kim S K, Mun M S. A supervised feature-projection-based real-time EMG pattern recognition for multifunction myoelectric hand control. IEEE/ASME Transactions on Mechatronics, 2007, 12(3):282-290 doi: 10.1109/TMECH.2007.897262
|
[46]
|
Cavallaro E E, Rosen J, Perry J C, Burns S. Real-time myoprocessors for a neural controlled powered exoskeleton arm. IEEE Transactions on Biomedical Engineering, 2006, 53(11):2387-2396 doi: 10.1109/TBME.2006.880883
|
[47]
|
Artemiadis P K, Kyriakopoulos K J. EMG-based control of a robot arm using low-dimensional embeddings. IEEE Transactions on Robotics, 2010, 26(2):393-398 doi: 10.1109/TRO.2009.2039378
|
[48]
|
Artemiadis P K, Kyriakopoulos K J. An EMG-based robot control scheme robust to time-varying EMG signal features. IEEE Transactions on Information Technology in Biomedicine, 2010, 14(3):582-588 doi: 10.1109/TITB.2010.2040832
|
[49]
|
Ajoudani A, Tsagarakis N, Bicchi A. Tele-impedance:teleoperation with impedance regulation using a body-machine interface. The International Journal of Robotics Research, 2012, 31(13):1642-1656 doi: 10.1177/0278364912464668
|
[50]
|
Karavas N, Ajoudani A, Tsagarakis N, Saglia J, Bicchi A, Caldwell D. Tele-impedance based assistive control for a compliant knee exoskeleton. Robotics and Autonomous Systems, 2015, 73:78-90 doi: 10.1016/j.robot.2014.09.027
|
[51]
|
Hochberg L R, Bacher D, Jarosiewicz B, Masse N Y, Simeral J D, Vogel J, Haddadin S, Liu J, Cash S S, Van Der Smagt P, Donoghue J P. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature, 2012, 485(7398):372-375 doi: 10.1038/nature11076
|
[52]
|
Sadeghian E B, Moradi M H. Continuous detection of motor imagery in a four-class asynchronous BCI. In:Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS). Lyon, France:IEEE, 2007. 3241-3244
|
[53]
|
Iturrate I, Antelis J M, Kubler A, Minguez J. A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation. IEEE Transactions on Robotics, 2009, 25(3):614-627 doi: 10.1109/TRO.2009.2020347
|
[54]
|
Witkowski M, Cortese M, Cempini M, Mellinger J, Vitiello N, Soekadar S R. Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG). Journal of NeuroEngineering and Rehabilitation, 2014, 11:165 doi: 10.1186/1743-0003-11-165
|
[55]
|
Wang H T, Li Y Q, Long J Y, Yu T Y, Gu Z H. An asynchronous wheelchair control by hybrid EEG-EOG brain-computer interface. Cognitive Neurodynamics, 2014, 8(5):399-409 doi: 10.1007/s11571-014-9296-y
|
[56]
|
Tello R J, Bissoli A L C, Ferrara F, Müller S, Ferreira A, Bastos-Filho T F. Development of a human machine interface for control of robotic wheelchair and smart environment. In:Preprints of the 11th IFAC Symposium on Robot Control (SYROCO). Salvador, BA, Brazil:IFAC, 2015.
|
[57]
|
Ma J X, Zhang Y, Cichocki A, Matsuno F. A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs:application to robot control. IEEE Transactions on Biomedical Engineering, 2015, 62(3):876-889 doi: 10.1109/TBME.2014.2369483
|
[58]
|
胡进, 侯增广, 陈翼雄, 张峰, 王卫群.下肢康复机器人及其交互控制方法.自动化学报, 2014, 40(11):2377-2390) http://www.aas.net.cn/CN/abstract/abstract18514.shtmlHu Jin, Hou Zeng-Guang, Chen Yi-Xiong, Zhang Feng, Wang Wei-Qun. Lower limb rehabilitation robots and interactive control methods. Acta Automatica Sinica, 2014, 40(11):2377-2390( http://www.aas.net.cn/CN/abstract/abstract18514.shtml
|
[59]
|
Jones C L, Wang F R, Morrison R, Sarkar N, Kamper D G. Design and development of the cable actuated finger exoskeleton for hand rehabilitation following stroke. IEEE/ASME Transactions on Mechatronics, 2014, 19(1):131-140 doi: 10.1109/TMECH.2012.2224359
|
[60]
|
Chiri A, Vitiello N, Giovacchini F, Roccella S, Vecchi F, Carrozza M C. Mechatronic design and characterization of the index finger module of a hand exoskeleton for post-stroke rehabilitation. IEEE/ASME Transactions on Mechatronics, 2012, 17(5):884-893 doi: 10.1109/TMECH.2011.2144614
|
[61]
|
Ali A M M, Yusof Z M, Kushairy A K, Zaharah F, Ismail A. Development of smart glove system for therapy treatment. In:Proceedings of the 2015 International Conference on BioSignal Analysis, Processing and Systems. Kuala Lumpur, Malaysia:IEEE, 2015. 67-71
|
[62]
|
Jeong S K, Kim K S, Kim S. Development of a robotic finger with an active dual-mode twisting actuation and a miniature tendon tension sensor. In:Proceedings of the 2016 IEEE International Conference on Advanced Intelligent Mechatronics. Banff, AB, Canada:IEEE, 2016. 1-6
|
[63]
|
Cempini M, Cortese M, Vitiello N. A powered finger-thumb wearable hand exoskeleton with self-aligning joint axes. IEEE/ASME Transactions on Mechatronics, 2015, 20(2):705-716 doi: 10.1109/TMECH.2014.2315528
|
[64]
|
Iqbal J, Tsagarakis N G, Caldwell D G. Human hand compatible underactuated exoskeleton robotic system. Electronics Letters, 2014, 50(7):494-496 doi: 10.1049/el.2014.0508
|
[65]
|
Iqbal J, Tsagarakis NG, Caldwell D G. Four-fingered lightweight exoskeleton robotic device accommodating different hand sizes. Electronics Letters, 2015, 51(12):888-890 doi: 10.1049/el.2015.0850
|
[66]
|
Zanotto D, Stegall P, Agrawal S K. Adaptive assist-as-needed controller to improve gait symmetry in robot-assisted gait training. In:Proceedings of the 2014 IEEE International Conference on Robotics and Automation. Hong Kong, China:IEEE, 2014. 724-729
|
[67]
|
Agarwal P, Deshpande A D. Impedance and force-field control of the index finger module of a hand exoskeleton for rehabilitation. In:Proceedings of the 2015 IEEE International Conference on Rehabilitation Robotics. Singapore:IEEE, 2015. 85-90
|
[68]
|
Tang Z J, Sugano S, Iwata H. A finger exoskeleton for rehabilitation and brain image study. In:Proceedings of the 2013 IEEE International Conference on Rehabilitation Robotics. Seattle, USA:IEEE, 2013. 1-6
|
[69]
|
Dalli D, Saliba M A. The university of malta minimal anthropomorphic robot (UM-MAR) hand II. In:Proceedings of the 2016 IEEE International Conference on Advanced Intelligent Mechatronics. Banff, Canada:IEEE, 2016. 371-276
|
[70]
|
Li Q L, Song Y, Hou Z G. Estimation of lower limb periodic motions from sEMG using least squares support vector regression. Neural Processing Letters, 2015, 41(3):371-388 doi: 10.1007/s11063-014-9391-4
|
[71]
|
Bao G J, Li K, Xu S, Huang P X, Wu L, Yang Q H. Motion identification based on sEMG for flexible pneumatic hand rehabilitator. Industrial Robot:An international Journal, 2015, 42(1):25-35 doi: 10.1108/IR-08-2014-0376
|
[72]
|
Ding Q C, Han J D, Zhao X G, Chen Y. Missing-data classification with the extended full-dimensional Gaussian mixture model:applications to EMG-based motion recognition. IEEE Transactions on Industrial Electronics, 2015, 62(8):4994-5005 doi: 10.1109/TIE.2015.2403797
|
[73]
|
Adewuyi A A, Hargrove L J, Kuiken T A. An analysis of intrinsic and extrinsic hand muscle EMG for improved pattern recognition control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24(4):485-494 doi: 10.1109/TNSRE.2015.2424371
|
[74]
|
Lee J, Kim M, Kim K. A robust control method of multi-DOF power-assistant robots for unknown external perturbation using sEMG signals. In:Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany:IEEE, 2015. 1045-1051
|
[75]
|
Guo S X, Zhang F, Wei W, Zhao F, Wang Y L. Kinematic analysis of a novel exoskeleton finger rehabilitation robot for stroke patients. In:Proceedings of the 2014 IEEE International Conference on Mechatronics and Automation. Tianjin, China:IEEE, 2014. 924-929
|
[76]
|
Goldfarb M, Lawson B E, Shultz A H. Realizing the promise of robotic leg prostheses. Science Translational Medicine, 2013, 5(210):5302-5314 https://www.researchgate.net/publication/258336585_Realizing_the_Promise_of_Robotic_Leg_Prostheses
|
[77]
|
Kazerooni H, Racine J L, Huang L H, Steger R. On the control of the berkeley lower extremity exoskeleton (BLEEX). In:Proceedings of the 2005 IEEE International Conference on Robotics and Automation (ICRA). Seattle, WA, USA:IEEE, 2005. 4353-4360
|
[78]
|
Zoss A B, Kazerooni H, Chu A. Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Transactions on Mechatronics, 2006, 11(2):128-138 doi: 10.1109/TMECH.2006.871087
|
[79]
|
Kazerooni H, Steger R. The Berkeley lower extremity exoskeleton. Journal of Dynamic Systems, Measurement, and Control, 2006, 128(1):14-25 doi: 10.1115/1.2168164
|
[80]
|
Sankai Y. HAL:hybrid assistive limb based on cybernics. Robotics Research. Berlin Heidelberg:Springer, 2011. 25-34
|
[81]
|
Suzuki K, Mito G, Kawamoto H, Hasegawa Y, Sankai Y. Intention-based walking support for paraplegia patients with robot suit HAL. Advanced Robotics, 2007, 21(12):1441-1469
|
[82]
|
Tsukahara A, Kawanishi R, Hasegawa Y, Sankai Y. Sit-to-stand and stand-to-sit transfer support for complete paraplegic patients with robot suit HAL. Advanced Robotics, 2010, 24(11):1615-1638 doi: 10.1163/016918610X512622
|
[83]
|
http://www.cyberdyne.jp/english/products/HAL/index.html
|
[84]
|
Yamamoto K, Hyodo K, Ishii M, Matsuo T. Development of power assisting suit for assisting nurse labor. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 2002, 45(3):703-711 doi: 10.1299/jsmec.45.703
|
[85]
|
Yamamoto K, Ishii M, Hyodo K, Yoshimitsu T, Matsuo T. Development of power assisting suit (miniaturization of supply system to realize wearable suit). JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 2003, 46(3):923-930 doi: 10.1299/jsmec.46.923
|
[86]
|
Wehner M, Quinlivan B, Aubin P M, Martinez-Villalpando E, Baumann M, Stirling L, Holt K, Wood R, Walsh C. A lightweight soft exosuit for gait assistance. In:Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA). Karlsruhe, Germany:IEEE, 2013. 3362-3369
|
[87]
|
Asbeck A T, Dyer R J, Larusson A F, Walsh C J. Biologically-inspired soft exosuit. In:Proceedings of the 2013 IEEE international conference on Rehabilitation robotics (ICORR). Seattle, WA:IEEE, 2013. 1-8
|
[88]
|
Asbeck A T, De Rossi S M M, Galiana I, Ding Y, Walsh C J. Stronger, smarter, softer:next-generation wearable robots. IEEE Robotics & Automation Magazine, 2014, 21(4):22-33 https://www.researchgate.net/publication/273396915_Stronger_Smarter_Softer_Next-Generation_Wearable_Robots
|
[89]
|
Asbeck A T, De Rossi S M M, Holt K G, Walsh C J. A biologically inspired soft exosuit for walking assistance. The International Journal of Robotics Research, 2015, 34(6):744-762 doi: 10.1177/0278364914562476
|
[90]
|
http://rewalk.com/about-products-2/
|
[91]
|
http://bleex.me.berkeley.edu/research/exoskeleton/bleex/
|
[92]
|
https://www.hocoma.com/world/en/products/lokomat/
|
[93]
|
Jezernik S, Colombo G, Keller T, Frueh H, Morari M. Robotic orthosis lokomat:a rehabilitation and research tool. Neuromodulation:Technology at the Neural Interface, 2003, 6(2):108-115 doi: 10.1046/j.1525-1403.2003.03017.x
|
[94]
|
Banala S K, Agrawal S K, Kim S H, Scholz J P. Novel gait adaptation and neuromotor training results using an active leg exoskeleton. IEEE/ASME Transactions on Mechatronics, 2010, 15(2):216-225 doi: 10.1109/TMECH.2010.2041245
|
[95]
|
Giovacchini F, Vannetti F, Fantozzi M, Cempini M, Cortese M, Parri A, Yan T F, Lefeber D, Vitiello N. A light-weight active orthosis for hip movement assistance. Robotics and Autonomous Systems, 2014, 73:123-134 https://www.researchgate.net/publication/265689247_A_light-weight_active_orthosis_for_hip_movement_assistance
|
[96]
|
Zajac F E, Neptune R R, Kautz S A. Biomechanics and muscle coordination of human walking:part II:lessons from dynamical simulations and clinical implications. Gait & Posture, 2003, 17(1):1-17 http://www.citeulike.org/user/ALHALL20/article/3008921
|
[97]
|
Blaya J A, Herr H. Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2004, 12(1):24-31 doi: 10.1109/TNSRE.2003.823266
|
[98]
|
Park Y L, Chen B R, Young D, Stirling L, Wood R J, Goldeld E, Nagpal R. Bio-inspired active soft orthotic device for ankle foot pathologies. In:Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). San Francisco, CA:IEEE, 2011. 4488-4495
|
[99]
|
Collins S H, Wiggin M B, Sawicki G S. Reducing the energy cost of human walking using an unpowered exoskeleton. Nature, 2015, 522(7555):212-215 doi: 10.1038/nature14288
|
[100]
|
Au S K, Weber J, Herr H. Powered ankle-foot prosthesis improves walking metabolic economy. IEEE Transactions on Robotics, 2009, 25(1):51-66 doi: 10.1109/TRO.2008.2008747
|
[101]
|
Sup F, Varol H, Mitchell J, Withrow T J, Goldfarb M. Preliminary evaluations of a self-contained anthropomorphic transfemoral prosthesis. IEEE/ASME Transactions on Mechatronics, 2009, 14(6):667-676 doi: 10.1109/TMECH.2009.2032688
|
[102]
|
Hitt J, Sugar T, Holgate M, Bellmann R, Hollander K. Robotic transtibial prosthesis with biomechanical energy regeneration. Industrial Robot:An International Journal, 2009, 36(5):441-447 doi: 10.1108/01439910910980169
|
[103]
|
Cherelle P, Grosu V, Matthys A, Vanderborght B, Lefeber D. Design and validation of the ankle mimicking prosthetic (AMP-) foot 2.0. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22(1):138-148
|
[104]
|
Wang Q N, Yuan K B, Zhu J Y, Wang L. Walk the walk:a lightweight active transtibial prosthesis. IEEE Robotics & Automation Magazine, 2015, 22(4):80-89 https://www.researchgate.net/publication/281618143_Walk_the_Walk_A_Lightweight_Active_Transtibial_Prosthesis
|
[105]
|
Varol H A, Sup F, Goldfarb M. Multiclass real-time intent recognition of a powered lower limb prosthesis. IEEE Transactions on Biomedical Engineering, 2010, 57(3):542-551 doi: 10.1109/TBME.2009.2034734
|
[106]
|
Huang H, Zhang F, Hargrove L J, Dou Z, Rogers D R, Englehart K B. Continuous locomotion-mode identification for prosthetic legs based on neuromuscular-mechanical fusion. IEEE Transactions on Biomedical Engineering, 2011, 58(10):2867-2875 doi: 10.1109/TBME.2011.2161671
|
[107]
|
Hargrove L J, Simon A M, Young A J, Lipschutz R D, Finucane S B, Smith D G, Kuiken T A. Robotic leg control with EMG decoding in an amputee with nerve transfers. New England Journal of Medicine, 2013, 369(13):1237-1242 doi: 10.1056/NEJMoa1300126
|
[108]
|
Zheng E H, Wang L, Wei K L, Wang Q N. A noncontact capacitive sensing system for recognizing locomotion modes of transtibial amputees. IEEE Transactions on Biomedical Engineering, 2014, 61(12):2911-2920 doi: 10.1109/TBME.2014.2334316
|
[109]
|
Chapin J K, Moxon K A, Markowitz R S, Nicolelis M A. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nature Neuroscience, 1999, 2(7):664-670 doi: 10.1038/10223
|
[110]
|
Cavanagh P R, Komi P V. Electromechanical delay in human skeletal muscle under concentric and eccentric contractions. European Journal of Applied Physiology and Occupational Physiology, 1979, 42(3):159-163 doi: 10.1007/BF00431022
|
[111]
|
Li L, Baum B S. Electromechanical delay estimated by using electromyography during cycling at different pedaling frequencies. Journal of Electromyography and Kinesiology, 2004, 14(6):647-652 doi: 10.1016/j.jelekin.2004.04.004
|
[112]
|
Norman R W, Komi P V. Electromechanical delay in skeletal muscle under normal movement conditions. Acta Physiologica Scandinavica, 1979, 106(3):241-248 doi: 10.1111/apha.1979.106.issue-3
|
[113]
|
Englehart K, Hudgin B, Parker P. A wavelet-based continuous classification scheme for multifunction myoelectric control. IEEE Transactions on Biomedical Engineering, 2001, 48(3):302-311 doi: 10.1109/10.914793
|
[114]
|
Englehart K, Hudgins B. A robust, real-time control scheme for multifunction myoelectric control. IEEE Transactions on Biomedical Engineering, 2003, 50(7):848-854 doi: 10.1109/TBME.2003.813539
|
[115]
|
Kuiken T A, Dumanian G A, Lipschutz R D, Miller L A, Stubblefield K A. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthetics and Orthotics International, 2004, 28(3):245-253 doi: 10.3109/03093640409167756?tab=permissions&scroll=top
|
[116]
|
Kuiken T A, Miller L A, Lipschutz R D, Lock B A, Stubblefield K, Marasco P D, Zhou P, Dumanian G A. Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation:a case study. The Lancet, 2007, 369(9559):371-380 doi: 10.1016/S0140-6736(07)60193-7
|
[117]
|
Huang H, Kuiken T A, Lipschutz R D. A strategy for identifying locomotion modes using surface electromyography. IEEE Transactions on Biomedical Engineering, 2009, 56(1):65-72 doi: 10.1109/TBME.2008.2003293
|
[118]
|
Sensinger J W, Lock B A, Kuiken T A. Adaptive pattern recognition of myoelectric signals:Exploration of conceptual framework and practical algorithms. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2009, 17(3):270-278 doi: 10.1109/TNSRE.2009.2023282
|
[119]
|
Young A J, Simon A M, Hargrove L J. A training method for locomotion mode prediction using powered lower limb prostheses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22(3):671-677 doi: 10.1109/TNSRE.2013.2285101
|
[120]
|
Chen B J, Zheng E H, Fan X D, Liang T, Wang Q N, Wei K L, Wang L. Locomotion mode classification using a wearable capacitive sensing system. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21(5):744-755 doi: 10.1109/TNSRE.2013.2262952
|
[121]
|
Yan T F, Cempini M, Oddo C M, Vitiello N. Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robotics and Autonomous Systems, 2015, 64:120-136 doi: 10.1016/j.robot.2014.09.032
|
[122]
|
Van Damme M, Beyl P, Vanderborght B, Versluys R, Van Ham R, Vanderniepen I, Daerden F, Lefeber D. The safety of a robot actuated by pneumatic muscles-a case study. International Journal of Social Robotics, 2010, 2(3):289-303 doi: 10.1007/s12369-009-0042-2
|
[123]
|
De Santis A, Siciliano B, De Luca A, Bicchi A. An atlas of physical human-robot interaction. Mechanism and Machine Theory, 2008, 43(3):253-270 doi: 10.1016/j.mechmachtheory.2007.03.003
|
[124]
|
Kikuuwe R, Yasukouchi S, Fujimoto H, Yamamoto M. Proxy-based sliding mode control:a safer extension of PID position control. IEEE Transactions on Robotics, 2010, 26(4):670-683 doi: 10.1109/TRO.2010.2051188
|
[125]
|
Van Damme M, Vanderborght B, Verrelst B, Van Ham R, Daerden F, Lefeber D. Proxy-based sliding mode control of a planar pneumatic manipulator. The International Journal of Robotics Research, 2009, 28(2):266-284 doi: 10.1177/0278364908095842
|
[126]
|
Beyl P, Van Damme M, Van Ham R, Vanderborght B, Lefeber D. Pleated pneumatic artificial muscle-based actuator system as a torque source for compliant lower limb exoskeletons. IEEE/ASME Transactions on Mechatronics, 2014, 19(3):1046-1056 doi: 10.1109/TMECH.2013.2268942
|
[127]
|
Chen G, Zhou Z H, Vanderborght B, Wang N H, Wang Q N. Proxy-based sliding mode control of a robotic ankle-foot system for post-stroke rehabilitation. Advanced Robotics, 2016, 30(15):992-1003 doi: 10.1080/01691864.2016.1176601
|