An Overview of Generalized KYP Lemma Based Methods for FiniteFrequency Analysis and Design
-
摘要: 频域方法是控制理论与工程领域的一种基本研究手段,许多控制问题都可归结为有限频域性能指标的分析与综合问题.广义Kalman-Yakubovich-Popov(KYP)引理建立了频域方法(传递函数)与时域方法(状态空间)之间的一座桥梁,成为近年来系统与控制理论领域的研究热点之一.本文首先从信号和系统两个角度阐明有限频域分析与设计的背景和意义,并依次讨论三种主要研究方法(经典控制理论方法、频率加权法和广义性能指标法)各自的优缺点.然后简单介绍广义KYP引理的主体内容,并详细总结当前基于广义KYP引理的有限频域分析与设计的主要方向及研究进展.最后给出在使用广义KYP引理时很重要但容易忽视的几点注记,同时指明该领域目前存在并值得未来进一步研究的关键问题.
-
关键词:
- 有限频域 /
- 广义Kalman-Yakubovich-Popov (KYP)引理 /
- 控制器设计 /
- 滤波 /
- 模型降阶
Abstract: Frequency-domain methods are a fundamental research approach in control theory and engineering. Many control problems can be viewed as analysis and design issues of finite frequency specifications. The generalized Kalman-Yakubovich-Popov (KYP) lemma, which bridges frequency-domain methods (transfer functions) and time-domain methods (state-space models), has been one of the hotspots in systems and control theory in recent years. In this paper, the background and significance of finite frequency analysis and design are first introduced from signal and system perspectives, respectively. Three main research methods (classical control theory, frequency-weighting strategy and generalized system specification based methodology) are discussed with respect to their individual advantages and disadvantages. The body of the generalized KYP lemma is then introduced briefly, which is followed by a detailed summary of main directions and recent progresses in finite frequency analysis and design based on the generalized KYP lemma. Finally, a few notes are presented, which are important but commonly overlooked in applying the generalized KYP lemma, and a few critical problems in the field are also pointed out, which are worth future investigation. -
表 1 集合$\Omega $与$\Lambda $以及矩阵$\Phi $和$\Psi $的取值
Table 1 The values of sets$\Omega $and$\Lambda $and matrices$\Phi $and$\Psi $
$\Lambda $ $\Phi $ $\Omega $ $\Psi $ 连续系统 $\left[ \begin{matrix} 0 & 1 \\ 1 & 0 \\ \end{matrix} \right]$ 低频 $\left[ \begin{matrix} -1 & 0 \\ 0 & \omega _{l}^{2} \\ \end{matrix} \right]$ 中频 $\left[ \begin{matrix} -1 & \text{j}{{\omega }_{c}} \\ -\text{j}{{\omega }_{c}} & -{{\omega }_{1}}{{\omega }_{2}} \\ \end{matrix} \right]$ 高频 $\left[ \begin{matrix} 1 & 0 \\ 0 & -\omega _{h}^{2} \\ \end{matrix} \right]$ 离散系统 $\left[ \begin{matrix} 1 & 0 \\ 0 & -1 \\ \end{matrix} \right]$ 低频 $\left[ \begin{matrix} 0 & 1 \\ 1 & -2\cos {{\omega }_{r}} \\ \end{matrix} \right]$ 中频 $\left[ \begin{matrix} 0 & {{\text{e}}^{\text{j}\omega c}} \\ {{\text{e}}^{-\text{j}\omega \text{c}}} & -2\cos {{\omega }_{r}} \\ \end{matrix} \right]$ 高频 $\left[ \begin{matrix} 0 & -1 \\ -1 & 2\cos {{\omega }_{h}} \\ \end{matrix} \right]$ -
[1] Du C L, Xie L H, Guo G X, Teoh J N. A generalized KYP lemma based approach for disturbance rejection in data storage systems. Automatica, 2007, 43(12): 2112-2118 doi: 10.1016/j.automatica.2007.04.023 [2] Chen Y, Zhang W L, Gao H J. Finite frequency H∞ control for building under earthquake excitation. Mechatronics, 2010, 20(1): 128-142 doi: 10.1016/j.mechatronics.2009.11.001 [3] Lim J S, Ryoo J R, Lee Y I, Son S Y. Design of a fixed-order controller for the track-following control of optical disc drives. IEEE Transactions on Control Systems Technology, 2011, 20(1): 205-213 http://cn.bing.com/academic/profile?id=2078120591&encoded=0&v=paper_preview&mkt=zh-cn [4] Paszke W, Rogers E, Galkowski K. On the design of ILC schemes for finite frequency range tracking specifications. In: Proceedings of the 49th IEEE Conference on Decision and Control. Atlanta, GA: IEEE, 2010. 6979-6984 [5] Pipeleers G, Swevers J. Optimal feedforward controller design for periodic inputs. International Journal of Control, 2010, 83(5): 1044-1053 doi: 10.1080/00207170903552067 [6] Hatada K, Hirata K. Energy-efficient power assist control for periodic motions. In: Proceedings of the SICE Annual Conference 2010. Taipei, China: IEEE, 2010. 2004-2009 [7] Pipeleers G, Demeulenaere B, De Schutter J, Swevers J. Generalised repetitive control: relaxing the period-delay-based structure. IET Control Theory and Applications, 2009, 3(11): 1528-1536 doi: 10.1049/iet-cta.2008.0499 [8] Pipeleers G, Demeulenaere B, Al-Bender F, De Schutter J, Swevers J. Optimal performance tradeoffs in repetitive control: experimental validation on an active air bearing setup. IEEE Transactions on Control Systems Technology, 2009, 17(4): 970-989 doi: 10.1109/TCST.2009.2014358 [9] Zhou K M, Doyle J C, Glover K. Robust and Optimal Control. New Jersey: Prentice-Hall, 1996. [10] Sun W C, Gao H J, Kaynak O. Finite frequency H∞ control for vehicle active suspension systems. IEEE Transactions on Control Systems Technology, 2011, 19(2): 416-422 doi: 10.1109/TCST.2010.2042296 [11] 孙维超. 汽车悬架系统的主动振动控制[博士学位论文], 哈尔滨工业大学, 中国, 2013Sun Wei-Chao. Active Vibration Control for Vehicle Suspension Systems [Ph.D. dissertation], Harbin Institute of Technology, China, 2013 [12] Costa-Castello R, Wang D W, Grino R. A passive repetitive controller for discrete-time finite-frequency positive-real systems. IEEE Transactions on Automatic Control, 2009, 54(4): 800-804 doi: 10.1109/TAC.2008.2009594 [13] Wongsura S, Liu L, Hara S. Conditions for mixed small gain and positive real property for LTI systems. In: Proceedings of the SICE Annual Conference 2010. Taipei, China: IEEE, 2010. 625-629 [14] Yang H J, Xia Y Q, Shi P, Fu M Y. Stability analysis for high frequency networked control systems. IEEE Transactions on Automatic Control, 2012, 57(10): 2694-2700 doi: 10.1109/TAC.2012.2190194 [15] Iwasaki T, Hara S, Yamauchi H. Dynamical system design from a control perspective: finite frequency positive-realness approach. IEEE Transactions on Automatic Control, 2003, 48(8): 1337-1354 doi: 10.1109/TAC.2003.815013 [16] Forbs J R. Extensions of Input-Output Stability Theory and the Control of Aerospace Systems [Ph.D. dissertation], University of Toronto, Canada, 2011 [17] Wu S P, Boyd S, Vandenberghe L. FIR filter design via spectral factorization and convex optimization. Applied and Computational Control, Signals, and Circuits. New York: Springer, 1999. 215-245 http://cn.bing.com/academic/profile?id=1591179352&encoded=0&v=paper_preview&mkt=zh-cn [18] Lei C U, Wong N. IIR approximation of FIR filters via discrete-time hybrid-domain vector fitting. IEEE Signal Processing Letters, 2009, 16(6): 533-537 doi: 10.1109/LSP.2009.2017478 [19] Apkarian P, Noll D. Nonsmooth optimization for multiband frequency domain control design. Automatica, 2007, 43(4): 724-731 doi: 10.1016/j.automatica.2006.08.031 [20] SimÖes A M, Apkarian P, Noll D. Nonsmooth multi-objective synthesis with applications. Control Engineering Practice, 2009, 17(11): 1338-1348 doi: 10.1016/j.conengprac.2009.06.010 [21] 裴润, 宋申民. 自动控制原理. 哈尔滨: 哈尔滨工业大学出版社, 2006.Pei Run, Song Shen-Min. Principles of Automatic Control. Harbin: Harbin Institute of Technology Press, 2006. [22] 郑大钟. 线性系统理论. 北京: 清华大学出版社, 2002.Zheng Da-Zhong. Linear System Theory. Beijing: Tsinghua University Press, 2002. [23] Anderson B D O, Moore J B. Optimal Control: Linear Quadratic Methods. Englewood Cliffs, New Jersey: Prentice-Hall, 1989. [24] Enns D F. Model reduction with balanced realizations: an error bound and a frequency weighted generalization. In: Proceedings of the 23rd Conference on Decision and Control. Las Vegas, NV, USA: IEEE, 1984. 127-132 [25] Anderson B D O. Weighted Hankel-norm approximation: calculation of bounds. Systems & Control Letters, 1986, 7(4): 247-255 http://cn.bing.com/academic/profile?id=2031798783&encoded=0&v=paper_preview&mkt=zh-cn [26] Chow Y L, Hu Y B, Li X W, Kominek A, Lam J. Mixed additive/multiplicative H∞ model reduction. Journal of Dynamic Systems, Measurement, and Control, 2013, 135(5): 051005, DOI: 10.1115/1.4024111 [27] Zhou K M. Frequency-weighted L∞ norm and optimal Hankel norm model reduction. IEEE Transactions on Automatic Control, 1995, 40(10): 1687-1699 doi: 10.1109/9.467681 [28] Luo H, Lu W S, Antoniou A. A weighted balanced approximation for 2-D discrete systems and its application to model reduction. IEEE Transactions on Circuits and Systems—I: Fundamental Theory and Applications, 1995, 42(8): 419-429 doi: 10.1109/81.404046 [29] Wang G, Sreeram V, Liu W Q. A new frequency-weighted balanced truncation method and an error bound. IEEE Transactions on Automatic Control, 1999, 44(9): 1734-1737 doi: 10.1109/9.788542 [30] Ghafoor A, Wang J, Sreeram V. Frequency-weighted model reduction method with error bounds for 2-D separable denominator discrete systems. In: Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation, Intelligent Control. Limassol, Cyprus: IEEE, 2005. 525-530 [31] Ghafoor A, Sreera V, Treasure R. Frequency weighted model reduction technique retaining Hankel singular values. Asian Journal of Control, 2007, 9(1): 50-56 http://cn.bing.com/academic/profile?id=2084554706&encoded=0&v=paper_preview&mkt=zh-cn [32] Ghafoor A, Sreeram V. A survey/review of frequency-weighted balanced model reduction techniques. Journal of Dynamic Systems, Measurement, and Control, 2008, 130(6): 758-767 http://cn.bing.com/academic/profile?id=1973799947&encoded=0&v=paper_preview&mkt=zh-cn [33] Liu Y, Anderson B D O. Frequency weighted controller reduction methods and loop transfer recovery. Automatica, 1990, 26(3): 487-497 doi: 10.1016/0005-1098(90)90020-I [34] Houlis P, Sreeram V. A parametrized controller reduction technique via a new frequency weighted model reduction formulation. IEEE Transactions on Automatic Control, 2009, 54(5): 1087-1093 doi: 10.1109/TAC.2008.2010993 [35] Gawronski W, Juang J N. Model reduction in limited time and frequency intervals. International Journal of Systems Science, 1990, 21(2): 349-376 doi: 10.1080/00207729008910366 [36] Rotea M A. The generalized H2 control problem. Automatica, 1993, 29(2): 373-385 doi: 10.1016/0005-1098(93)90130-L [37] Li X W, Gao H J. A delay-dependent approach to robust generalized H2 filtering for uncertain continuous-time systems with interval delay. Signal Processing, 2011, 91(10): 2371-2378 doi: 10.1016/j.sigpro.2011.04.032 [38] Gugercin S, Antoulas A C. A survey of model reduction by balanced truncation and some new results. International Journal of Control, 2004, 77(8): 748-766 doi: 10.1080/00207170410001713448 [39] Ghafoor A, Sreeram V. Model reduction via limited frequency interval gramians. IEEE Transactions on Circuits and Systems—I: Regular Papers, 2008, 55(9): 2806-2812 doi: 10.1109/TCSI.2008.920092 [40] Sahlan S, Ghafoor A, Sreeram V. A new method for the model reduction technique via a limited frequency interval impulse response gramian. Mathematical and Computer Modelling, 2012, 55(3-4): 1034-1040 doi: 10.1016/j.mcm.2011.09.028 [41] Petersson D, LÖfberg J. Model Reduction Using a Frequency-Limited H2-Cost, Technical Report LiTH-ISY-R-3045, Division of Automatic Control, LinkÖpings University, Sweden, 2012. http://www.control.isy.liu.se/publications/?lname=norrlof&fname=&title=&year=&type=any&number=LiTH&keywords=&go=Search&output=html [42] Iwasaki T, Meinsma G, Fu M Y. Generalized S-procedure and finite frequency KYP lemma. Mathematical Problems in Engineering, 2000, 6(2-3): 305-320 doi: 10.1155/S1024123X00001368 [43] Iwasaki T, Hara S. Generalized KYP lemma: unified frequency domain inequalities with design applications. IEEE Transactions on Automatic Control, 2005, 50(1): 41-59 doi: 10.1109/TAC.2004.840475 [44] Rantzer A. On the Kalman-Yakubovich-Popov lemma. Systems & Control Letters, 1996, 28(1): 7-10 http://cn.bing.com/academic/profile?id=2077418568&encoded=0&v=paper_preview&mkt=zh-cn [45] Iwasaki T, Hara S. Generalization of Kalman-Yakubovic-Popov lemma for restricted frequency inequalities. In: Proceedings of the 2003 American Control Conference. Denver, Colorado, USA: IEEE, 2003. 3828-3833 [46] Nesterov Y, Nemirovskii A. Interior-Point Polynomial Algorithms in Convex Programming. Philadelphia, PA: SIAM, 1994. [47] Boyd S, El Ghaoui L, Feron E, Balakrishnan V. Linear Matrix Inequalities in System and Control Theory. Philadelphia, PA: SIAM, 1994. [48] 高会军. 基于参数依赖Lyapunov函数的不确定动态系统的分析与综合[博士学位论文], 哈尔滨工业大学, 中国, 2005Gao Hui-Jun. Analysis and Synthesis of Uncertain Dynamic Systems Based on Parameter-Dependent Lyapunov Function [Ph.D. dissertation], Harbin Institute of Technology, China, 2005 [49] 俞立. 鲁棒控制--线性矩阵不等式处理方法. 北京: 清华大学出版社, 2002.Yu Li. Robust Control-Linear Matrix Inequality Method. Beijing: Tsinghua University Press, 2002. [50] Toh K C, Todd M J, TÜtÜncÜ R H. SDPT3—a matlab software package for semidefinite programming, version 1.3. Optimization Methods and Software, 1999, 11(1-4): 545-581 doi: 10.1080/10556789908805762 [51] Sturm J F. Using SeDuMi 1.02, a matlab toolbox for optimization over symmetric cones. Optimization Methods and Software, 1999, 11(1-4): 625-653 doi: 10.1080/10556789908805766 [52] Skelton R E, Iwasaki T, Grigoriadis K M. A Unified Algebraic Approach to Linear Control Design. London and Bristol, PA: Taylor & Francis, 1998. [53] Hara S, Iwasaki T. From generalized KYP lemma to engineering applications. In: Proceedings of the 42nd IEEE Conference on Decision and Control. Maui, Hawaii, USA: IEEE, 2003. 792-797 [54] Iwasaki T, Hara S. Robust control synthesis with general frequency domain specifications: static gain feedback case. In: Proceedings of the 2004 American Control Conference. Boston, MA: IEEE, 2004. 4613-4618 [55] Iwasaki T, Hara S. Feedback control synthesis of multiple frequency domain specifications via generalized KYP lemma. International Journal of Robust & Nonlinear Control, 2007, 17(5-6): 415-434 http://cn.bing.com/academic/profile?id=2004080117&encoded=0&v=paper_preview&mkt=zh-cn [56] Hara S, Iwasaki T. Sum-of-squares decomposition via generalized KYP lemma. IEEE Transactions on Automatic Control, 2009, 54(5): 1025-1029 doi: 10.1109/TAC.2009.2017149 [57] Hara S, Iwasaki T, Shiokata D. Robust PID control using generalized KYP synthesis: direct open-loop shaping in multiple frequency ranges. IEEE Control Systems Magazine, 2006, 26(1): 80-91 doi: 10.1109/MCS.2006.1580156 [58] Shiokata D, Hara S, Iwasaki T. From Nyquist/Bode to GKYP design: design algorithms with CACSD tools. In: Proceedings of the SICE 2004 Annual Conference. Sapporo: SICE, 2004. 1780-1785 [59] El Ghaoui L, Oustry F, AitRami M. A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Transactions on Automatic Control, 1997, 42(8): 1171-1176 doi: 10.1109/9.618250 [60] Li X W, Gao H J. A heuristic approach to static output-feedback controller synthesis with restricted frequency-domain specifications. IEEE Transactions on Automatic Control, 2014, 59(4): 1008-1014 doi: 10.1109/TAC.2013.2281472 [61] Shu Z, Lam J. An augmented system approach to static output-feedback stabilization with H∞ performance for continuous-time plants. International Journal of Robust & Nonlinear Control, 2009, 19(7): 768-785 [62] >Peaucelle D, Arzelier D. An efficient numerical solution for H2 static output feedback synthesis. In: Proceeding of the 2001 European Control Conference. Porto, Portugal: IEEE, 2001. 3800-3805 [63] Agulhari C M, Oliveira R C L F, Peres P L D. LMI relaxations for reduced-order robust H∞ control of continuous-time uncertain linear systems. IEEE Transactions on Automatic Control, 2012, 57(6): 1532-1537 doi: 10.1109/TAC.2011.2174693 [64] Li X W, Yin S, Gao H J, Kaynak O. Robust static output-feedback control for uncertain linear discrete-time systems via the generalized KYP lemma. In: Proceedings of the 19th IFAC World Congress. Cape Town, South Africa: IFAC, 2014. 7430-7435 [65] Li X W, Gao H J. Robust frequency-domain constrained feedback design via a two-stage heuristic approach. IEEE Transactions on Cybernetics, 2015, 45(10): 2065-2075 doi: 10.1109/TCYB.2014.2364587 [66] Li X W, Gao H J. Generalized Kalman-Yakubovich-Popov lemma for 2-D FM LSS model and its application to finite frequency positive real control. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference. Orlando, FL: IEEE, 2011. 6991-6996 [67] Li X W, Gao H J, Wang C H. Generalized Kalman-Yakubovich-Popov lemma for 2-D FM LSS model. IEEE Transactions on Automatic Control, 2012, 57(12): 3090-3103 doi: 10.1109/TAC.2012.2200370 [68] Hao Y Q, Duan Z S, Huang D. Structured controller synthesis with restricted frequency domain specifications. In: Proceedings of the 34th Chinese Control Conference. Hangzhou, China: IEEE, 2015. 2895-2990 [69] Hao Y Q, Duan Z S. Static output-feedback controller synthesis with restricted frequency domain specifications for time-delay systems. IET Control Theory and Applications, 2015, 9(10): 1608-1614 doi: 10.1049/iet-cta.2014.1000 [70] 张晓妮, 杨光红. 混合频小增益动态输出反馈控制综合. 自动化学报, 2008, 34(5): 551-557 doi: 10.3724/SP.J.1004.2008.00551Zhang Xiao-Ni, Yang Guang-Hong. Dynamic output feedback control synthesis with mixed frequency small gain specifications. Acta Automatica Sinica, 2008, 34(5): 551-557 doi: 10.3724/SP.J.1004.2008.00551 [71] 梅平, 邹云. 基于广义KYP引理方法的奇异摄动系统有限频段正实性能分析. 控制与决策, 2010, 25(5): 711-720Mei Ping, Zou Yun. Finite frequency positive realness analysis of singularly perturbed systems based on generalized KYP lemma approach. Control and Decision, 2010, 25(5): 711-720 [72] 董全超. 线性时滞系统鲁棒H∞故障估计与主动容错控制[博士学位论文], 山东大学, 中国, 2010Dong Quan-Chao. Robust H∞ Fault Estimation and Active Fault Tolerant Control for Linear Time-delay Systems [Ph.D. dissertation], Shandong University, China, 2010 [73] Li H, Peng L Y, Ju H H. A finite frequency domain approach to robust and parameter dependent PID controller design for LPV systems. In: Proceedings of the 30th Chinese Control Conference. Yantai, China: IEEE, 2011. 3688-3694 [74] Lim J S, Ryoo J R, Lee Y I. Fixed-order controller design with frequency domain specifications. In: Proceedings of ICROS-SICE International Joint Conference 2009. Fukuoka, Japan: IEEE, 2009. 108-111 [75] Ishizaki T, Kashima K, Imura J, Katoh A, Morita H, Aihara K. Distributed parameter modeling and finite-frequency loop-shaping of electromagnetic molding machine. Control Engineering Practice, 2013, 21(12): 1735-1743 doi: 10.1016/j.conengprac.2013.08.003 [76] Wang H, Yang G H. A finite frequency approach to filter design for uncertain discrete-time systems. International Journal of Adaptive Control & Signal Processing, 2008, 22: 533-550 http://cn.bing.com/academic/profile?id=1974860912&encoded=0&v=paper_preview&mkt=zh-cn [77] hang X N, Yang G H. Delay-dependent filtering for discrete-time systems with finite frequency small gain specifications. In: Proceedings of the 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference. Shanghai, China: IEEE, 2009. 4420-4425 [78] Gao H J, Li X W, Yu X H. Finite frequency approaches to H∞ filtering for continuous-time state-delayed systems. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference. Orlando, FL: IEEE, 2011. 2583-2588 [79] Gao H J, Li X W. H∞ filtering for discrete-time state-delayed systems with finite frequency specifications. IEEE Transactions on Automatic Control, 2011, 56(12): 2935-2941 doi: 10.1109/TAC.2011.2159909 [80] Gao H J, Li X W. Robust Filtering for Uncertain Systems. Switzerland: Springer International Publishing, 2014. [81] 李贤伟. 时滞系统的有限频域H∞滤波分析与综合[硕士学位论文], 哈尔滨工业大学, 中国, 2011Li Xian-Wei. Finite Frequency H∞ Filtering Analysis and Synthesis of Time-Delay Systems [Master dissertation], Harbin Institute of Technology, China, 2011 [82] Li X W, Gao H J. Robust finite frequency H∞ filtering for uncertain 2-D Roesser systems. Automatica, 2012, 48(6): 1163-1170 doi: 10.1016/j.automatica.2012.03.012 [83] Li X W, Gao H J, Karimi H R. Robust H∞ filtering for 2-D FM systems: a finite frequency approach. In: Proceedings of the 51st IEEE Annual Conference on Decision and Control. Maui, Hawaii, USA: IEEE, 2012. 3526-3530 [84] Li X W, Gao H J. Robust finite frequency H∞ filtering for uncertain 2-D systems: the FM model case. Automatica, 2013, 49(8): 2446-2452 doi: 10.1016/j.automatica.2013.04.014 [85] Li X W, Gao H J. Reduced-order generalized H∞ filtering for linear discrete-time systems with application to channel equalization. IEEE Transactions on Signal Processing, 2014, 62(13): 3393-3402 doi: 10.1109/TSP.2014.2324996 [86] 丁大伟. 线性切换系统的若干问题研究 [博士学位论文], 东北大学, 中国, 2010Ding Da-Wei. Study on Some Problems of Switched Linear Systems [Ph.D. dissertation], Northeastern University, China, 2010 [87] Ding D W, Yang G H. Fuzzy filter design for nonlinear systems in finite-frequency domain. IEEE Transactions on Fuzzy Systems, 2010, 18(5): 935-945 doi: 10.1109/TFUZZ.2010.2058807 [88] Wang H, Ju H H. Reliable H∞ filtering for LPV systems with sensor faults in finite frequency domain. International Journal of Systems Science, 2013, 44(12): 2310-2320 doi: 10.1080/00207721.2012.702240 [89] Grigoriadis K M. Optimal H∞ model reduction via linear matrix inequalities: continuous- and discrete-time cases. Systems & Control Letters, 1995, 26(5): 321-333 [90] Du X, Yang G H. H∞ model reduction of linear continuous-time systems over finite-frequency interval. IET Control Theory and Applications, 2010, 4(3): 499-508 doi: 10.1049/iet-cta.2008.0537 [91] 杜鑫. 基于LMI技术的线性系统模型降阶与静态输出反馈控制器设计[博士学位论文], 东北大学, 中国, 2009Du Xin. LMI-based Approaches to Model Reduction and Static Output Feedback Controller Design for Linear Systems [Ph.D. dissertation], Northeastern University, China, 2009 [92] Du X, Liu F W, Zhu X L, Chao W. Finite frequency approaches to H∞ model reduction for continuous-time state delayed systems. In: Proceedings of the 24th Chinese Control and Decision Conference. Taiyuan, China: IEEE, 2012. 470-475 [93] Du X, Liu F W, Zhu X L, Zheng M. H∞ model reduction of discrete-time linear state delayed systems over finite-frequency ranges. In: Proceedings of the 24th Chinese Control and Decision Conference. Taiyuan, China: IEEE, 2012. 954-959 [94] Li X W, Gao H J. A frequency-specific enhanced approach to transfer function approximation. In: Proceedings of the 23rd IEEE International Symposium on Industrial Electronics. Istanbul, Turkey: IEEE, 2014. 18-22 [95] Li X W, Gao H J. Min-max approximation of transfer functions with application to filter design. IEEE Transactions on Signal Processing, 2015, 63(1): 31-40 doi: 10.1109/TSP.2014.2364787 [96] Li X W, Yin S, Gao H J. Passivity-preserving model reduction with finite frequency H∞ approximation performance. Automatica, 2014, 50(9): 2294-2303 doi: 10.1016/j.automatica.2014.07.001 [97] Li X W, Yu C B, Gao H J. Frequency-limited H∞ model reduction for positive systems. IEEE Transactions on Automatic Control, 2015, 60(4): 1093-1098 doi: 10.1109/TAC.2014.2352751 [98] Yang R, Xie L H, Zhang C S. Generalized two-dimensional Kalman-Yakubovich-Popov lemma for discrete Roesser model. IEEE Transactions on Circuits and Systems—I: Regular Papers, 2008, 55(10): 3223-3233 doi: 10.1109/TCSI.2008.923284 [99] Li X W, Lam J, Cheung K C. Generalized H∞ model reduction for stable two-dimensional discrete systems. Multidimensional Systems and Signal Processing, 2016, 27(2): 359-382 doi: 10.1007/s11045-014-0306-3 [100] Shen J, Lam J. Improved results on H∞ model reduction for continuous-time linear systems over finite frequency ranges. Automatica, 2015, 5: 79-84 http://cn.bing.com/academic/profile?id=2089410483&encoded=0&v=paper_preview&mkt=zh-cn [101] Ding D W, Du X, Li X. Finite-frequency model reduction of two-dimensional digital filters. IEEE Transactions on Automatic Control, 2015, 60(6): 1624-1629 doi: 10.1109/TAC.2014.2359305 [102] Wang H, Yang G H. A finite frequency domain approach to fault detection observer design for linear continuous-time systems. Asian Journal of Control, 2008, 10(5): 559-568 doi: 10.1002/asjc.v10:5 [103] Wang H, Yang G H. A finite frequency domain approach to fault detection for linear discrete-time systems. International Journal of Control, 2008, 81(7): 1162-1171 doi: 10.1080/00207170701691513 [104] 王恒, 居鹤华, 杨光红. 线性多胞型不确定连续系统故障检测滤波器设计. 自动化学报, 2010, 36(5): 742-750 http://www.aas.net.cn/CN/abstract/abstract13721.shtmlWang Heng, Ju He-Hua, Yang Guang-Hong. Fault detection filter design for linear polytopic uncertain continuous-time systems. Acta Automatica Sinica, 2010, 36(5): 742-750 http://www.aas.net.cn/CN/abstract/abstract13721.shtml [105] Wang H, Yang G H. Simultaneous fault detection and control for uncertain linear discrete-time systems. IET Control Theory and Applications, 2009, 3(5): 583-594 doi: 10.1049/iet-cta.2007.0463 [106] Yang G H, Wang H, Xie L H. Fault detection for output feedback control systems with actuator stuck faults: a steady-state-based approach. International Journal of Robust & Nonlinear Control, 2010, 20(15): 1739-1757 http://cn.bing.com/academic/profile?id=2022087177&encoded=0&v=paper_preview&mkt=zh-cn [107] Yang H J, Xia Y Q, Liu B. Fault detection for T-S fuzzy discrete systems in finite-frequency domain. IEEE Transactions on Systems, Man, and Cybernetics--Part B: Cybernetics, 2011, 41(4): 911-920 doi: 10.1109/TSMCB.2010.2099653 [108] Yang H J, Xia Y Q, Zhang J H. Generalised finite-frequency KYP lemma in delta domain and applications to fault detection. International Journal of Control, 2011, 84(3): 511-525 doi: 10.1080/00207179.2011.561501 [109] Zhang Z, Jaimoukha I M. Optimal state space solution to the fault detection problem at single frequency. In: Proceedings of the 18th IFAC World Congress. Milano, Italy: IFAC, 2011. 7619-7624 [110] Long Y, Yang G H. Fault detection and isolation for networked control systems with finite frequency specifications. International Journal of Robust & Nonlinear Control, 2014, 24(3): 495-514 http://cn.bing.com/academic/profile?id=1917424513&encoded=0&v=paper_preview&mkt=zh-cn [111] Long Y, Yang G H. Fault detection in finite frequency domain for networked control systems with missing measurements. Journal of the Franklin Institute, 2013, 350(9): 2605-2626 doi: 10.1016/j.jfranklin.2013.01.015 [112] Zhang K, Jiang B, Shi P, Xu J F. Multi-constrained fault estimation observer design with finite frequency specifications for continuous-time systems. International Journal of Control, 2014, 87(8): 1635-1645 doi: 10.1080/00207179.2014.880950 [113] Zhang K, Jiang B, Shi P, Xu J. Fault estimation observer design for discrete-time systems in finite-frequency domain. International Journal of Robust & Nonlinear Control, 2015, 25(9): 1379-1398 http://cn.bing.com/academic/profile?id=1486867056&encoded=0&v=paper_preview&mkt=zh-cn [114] Zhang K, Jiang B, Shi P, Xu J F. Analysis and design of robust H∞ fault estimation observer with finite-frequency specifications for discrete-time fuzzy systems. IEEE Transactions on Cybernetics, 2015, 45(7): 1225-1235 doi: 10.1109/TCYB.2014.2347697 [115] Zhou T. Generalized positiveness of spatially interconnected systems over quadratically constrained frequency domains. Systems & Control Letters, 2012, 61(12): 1187-1193 http://cn.bing.com/academic/profile?id=2031127339&encoded=0&v=paper_preview&mkt=zh-cn [116] Sun W C, Zhao Y, Li J F, Zhang L X, Gao H J. Active suspension control with frequency band constraints and actuator input delay. IEEE Transactions on Industrial Electronics, 2012, 59(1): 530-537 doi: 10.1109/TIE.2011.2134057 [117] Xiong J L, Petersen I R, Lanzon A. Finite frequency negative imaginary systems. IEEE Transactions on Automatic Control, 2012, 57(11): 2917-2922 doi: 10.1109/TAC.2012.2193705 [118] Hoang H G, Tuan H D, Apkarian P. A Lyapunov variable-free KYP lemma for SISO continuous systems. IEEE Transactions on Automatic Control, 2008, 53(11): 2669-2673 doi: 10.1109/TAC.2008.2007156 [119] Hoang H G, Tuan H D, Nguyen T Q. Frequency-selective KYP lemma, IIR filter, and filter bank design. IEEE Transactions on Signal Processing, 2009, 57(3): 956-965 doi: 10.1109/TSP.2008.2009012 [120] Pipeleers G, Vandenberghe L. Generalized KYP lemma with real data. IEEE Transactions on Automatic Control, 2011, 56(12): 2942-2946 doi: 10.1109/TAC.2011.2161945 [121] Pipeleers G, Iwasaki T, Hara S. Generalizing the KYP lemma to multiple frequency intervals. SIAM Journal on Control and Optimization, 2014, 52(6): 3618-3638 doi: 10.1137/130938451 [122] Graham M R, de Oliveira M C, de Callafon R A. An alternative Kalman-Yakubovich-Popov lemma and some extensions. Automatica, 2009, 45(6): 1489-1496 doi: 10.1016/j.automatica.2009.02.006 [123] Graham M R, de Oliveira M C. Linear matrix inequality tests for frequency domain inequalities with affine multipliers. Automatica, 2010, 46(5): 897-901 doi: 10.1016/j.automatica.2010.02.009 [124] Tanaka T, Langbort C. Symmetric formulation of the S-procedure, Kalman-Yakubovich-Popov lemma and their exact losslessness conditions. IEEE Transactions on Automatic Control, 2013, 58(6): 1486-1496 doi: 10.1109/TAC.2013.2237832 [125] Iwasaki T, Hara S, Fradkov A L. Time domain interpretations of frequency domain inequalities on (semi) finite ranges. Systems & Control Letters, 2005, 54(7): 681-691 http://cn.bing.com/academic/profile?id=2072400962&encoded=0&v=paper_preview&mkt=zh-cn [126] Kaizuka Y, Kojima C, Hara S. Time domain characterization of finite frequency properties via behavioral approach. In: Proceedings of the SICE Annual Conference 2008. Tokyo, Japan: IEEE, 2008. 2364-2369 [127] Kojima C, Hara S. An achievability condition for n-dimensional behaviors with a finite frequency specification: dissipation inequalities approach. In: Proceedings of the 49th IEEE Conference on Decision and Control. Atlanta, GA: IEEE, 2010. 7730-7735 [128] Kojima C, Hara S. Controller synthesis for multiple finite frequency specifications: dissipation inequalities approach. In: Proceedings of the SICE Annual Conference 2010. Taipei, China: IEEE, 2010. 173-178 [129] Sun W C, Li J F, Zhao Y, Gao H J. Vibration control for active seat suspension systems via dynamic output feedback with limited frequency characteristic. Mechatronics, 2011, 21(1): 250-260 doi: 10.1016/j.mechatronics.2010.11.001 [130] Li X W, Gao H J. Load mitigation for a floating wind turbine via generalized H∞ structural control. IEEE Transactions on Industrial Electronics, 2016, 63(1): 332-342 doi: 10.1109/TIE.2015.2465894 [131] Nagahara M, Yamamoto Y. Frequency domain min-max optimization of noise-shaping delta-sigma modulators. IEEE Transactions on Signal Processing, 2012, 60(6): 2828-2839 doi: 10.1109/TSP.2012.2188522 [132] Li X W, Gao H J, Yu C B. An iterative LMI approach to IIR noise transfer function optimization for delta-sigma modulators. In: Proceedings of the 3rd Australian Control Conference. Fremantle, WA: IEEE, 2013. 67-72 [133] Li X W, Yu C B, Gao H J. Design of delta-sigma modulators via generalized Kalman-Yakubovich-Popov lemma. Automatica, 2014, 50(10): 2700-2708 doi: 10.1016/j.automatica.2014.09.002 [134] Li X W, Gao H J, Gu K Q. Delay-independent stability analysis of linear time-delay systems based on frequency discretization. Automatica, 2016, 70: 288-294 doi: 10.1016/j.automatica.2015.12.031 [135] Li X W, Lam J, Gao H J, Gu Y. A frequency-partitioning approach to stability analysis of two-dimensional discrete systems. Multidimensional Systems and Signal Processing, 2015, 26(1): 67-93 doi: 10.1007/s11045-013-0237-4 [136] ÅstrÖm K J, Murray R M. Feedback Systems: An Introduction for Scientists and Engineers. Princeton: Princeton University Press, 2008. [137] Wu F, Jaramillo J J. Computationally efficient algorithm for frequency-weighted optimal H∞ model reduction. Asian Journal of Control, 2003, 5(3): 341-349 http://cn.bing.com/academic/profile?id=2138201448&encoded=0&v=paper_preview&mkt=zh-cn [138] De Oliveira M C, Skelton R E. Stability tests for constrained linear systems. Perspectives in Robust Control. London: Springer-Verlag, 2001. 241-257 http://cn.bing.com/academic/profile?id=1927395284&encoded=0&v=paper_preview&mkt=zh-cn [139] Chao H H, Vandenberghe L. Extensions of semidefinite programming methods for atomic decomposition. In: Proceedings of the 41st IEEE International Conference on Acoustics, Speech and Signal Processing. Shanghai, China: IEEE, 2016. 4757-4761