Energy-efficient Data Gathering Scheme Based on Compressive Sensing in Wireless Sensor Networks
-
摘要: 可靠高效的数据收集是无线传感器网络(Wireless sensor networks,WSN)应用中的关键问题.然而,由于无线通信链路的高失效率、节点资源受限以及环境恶劣等原因,网络容易发生丢包问题,使得现有的数据收集方法无法同时满足高精度和低能耗的要求.为此,本文提出了一种基于压缩感知的高能效数据收集方案.该方案主要分为节点上的数据处理和数据收集路径优化两个步骤.首先设计了基于指数核函数的稀疏矩阵来对感知数据进行稀疏化处理,然后综合考虑了数据的传输能耗和可靠性等因素,采用分块矩阵的思路,将单位矩阵和准循环低密度奇偶校验(Low density parity check,LDPC)码的校验矩阵相结合构造了测量矩阵,并证明了它与稀疏矩阵之间满足限制等距性质(Restricted isometry property,RIP).最后,将数据收集路径优化问题建模为哈密尔顿回路问题,并提出了基于树分解的路径优化算法进行求解.仿真结果表明,在网络存在丢包的情况下,本文方案仍然能够保证数据收集的高精确度,相比于其他数据收集方案而言,本文方案在数据重构误差和能耗方面的性能更优.Abstract: Reliable and energy-efficient data gathering is a key problem in the application of wireless sensor networks (WSN). However, due to the high failure rate of wireless communication link, limited resource and severe environment, the network easily generates the packet loss problem, which makes the existing data gathering methods fail to meet the requirements of high-accuracy and low-energy consumption at the same time. To solve this problem, an energy-efficient data gathering scheme based on compressive sensing is proposed in this paper. It is divided into the two steps: the data processing of nodes and the data gathering path optimization. The sparse matrix based on the exponential kernel function is firstly designed for sparse processing of sensed data. Then considering both the energy consumption and reliability of data transmission, a measurement matrix is constructed by using the idea of block matrix, which combines the unit matrix and the check matrix of quasi cyclic low density parity check (LDPC) code. It is proved that the restricted isometry property (RIP) is satisfied between the sparse matrix and the measurement matrix. Finally, the data gathering path-optimization problem is modeled as the Hamilton loop problem, and a path optimization algorithm based on the tree decomposition is proposed to solve this problem. Simulation results show that the proposed scheme can still guarantee the high-accuracy of data gathering in the case of packet losses. Compared with the other data gathering schemes, the proposed scheme has better performance in terms of the data reconstruction error and energy consumption.
-
表 1 仿真实验的主要参数
Table 1 The main parameters in simulation
参数 取值 数据包长度 1 000 b 发送1 bit 数据所需的能量 100 nJ 接收1 bit 数据所需的能量 5 nJ 单个节点每次数据收集所需能量 1 000 nJ 数据重构算法 OMP 算法 -
[1] Guo S, He L, Gu Y, Jiang B, He T. Opportunistic flooding in low-duty-cycle wireless sensor networks with unreliable links. IEEE Transactions on Computers, 2014, 63(11): 2787 -2802 doi: 10.1109/TC.2013.142 [2] 李建中, 高宏. 无线传感器网络的研究进展. 计算机研究与发展, 2015, 45(1): 1-15Li Jian-Zhong, Gao Hong. Survey on sensor network research. Journal of Computer Research and Development, 2015, 45(1): 1-15 [3] Luo H, Tao H X, Ma H D, Das S K. Data fusion with desired reliability in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 2011, 22(3): 501-513 doi: 10.1109/TPDS.2010.93 [4] Guo W Z, Hong W, Zhang B, Chen Y Z, Xiong N X. Reliable adaptive data aggregation route strategy for a trade-off between energy and lifetime in WSNs. Sensors, 2014, 14(9): 16972-16993 doi: 10.3390/s140916972 [5] Rosberg Z, Liu R P, Le Dinh T, Dong Y F, Jha S. Statistical reliability for energy efficient data transport in wireless sensor networks. Wireless Networks, 2010, 16(7): 1913-1927 doi: 10.1007/s11276-009-0235-5 [6] 谢志鹏, 陈松灿. CSMP: 基于约束等距的压缩感知匹配追踪. 计算机研究与发展, 2015, 49(3): 579-588Xie Zhi-Peng, Chen Song-Can. CSMP: compressive sensing matching pursuit based on restricted isometry property. Journal of Computer Research and Development, 2015, 49(3): 579-588 [7] Wu C, Ji Y S, Xu J, Ohzahata S, Kato T. Coded packets over lossy links: a redundancy-based mechanism for reliable and fast data collection in sensor networks. Computer Networks, 2014, 70(10): 179-191 http://cn.bing.com/academic/profile?id=2070953981&encoded=0&v=paper_preview&mkt=zh-cn [8] Joo C, Shroff N B. On the delay performance of in-network aggregation in lossy wireless sensor networks. IEEE/ACM Transactions on Networking, 2014, 22(2): 662-673 doi: 10.1109/TNET.2013.2256795 [9] Chou C T, Ignjatovic A, Hu W. Efficient computation of robust average of compressive sensing data in wireless sensor networks in the presence of sensor faults. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(8): 1525- 1534 doi: 10.1109/TPDS.2012.260 [10] Charbiwala Z, Chakraborty S, Zahedi S, He T, Bisdikian C, Kim Y, Srivastava M B. Compressive oversampling for robust data transmission in sensor networks. In: Proceedings of the 29th IEEE Conference on Computer Communications (INFOCOM). San Diego, CA, USA: IEEE Press, 2010. 1-9 http://cn.bing.com/academic/profile?id=2103365331&encoded=0&v=paper_preview&mkt=zh-cn [11] Wu X G, Yang P L, Jung T, Xiong Y, Zheng X. Compressive sensing meets unreliable link: sparsest random scheduling for compressive data gathering in lossy WSNs. In: Proceedings of the 15th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MOBICOM). Maui, HI, USA: ACM Press, 2014. 13-22 http://www.baidu.com/link?url=kG3E-JwjJerrhaxbjeNZK2UW3KHzjti7fyDFPUQYGXMUM1fHxKKgUlHrCaTGxj8FkOvZtdptoOk3uAzyMt3bDywkdxywbBGWAiah4ctC66ozJb0-lLd64P6kEecoEZo29vo-3kEZ7SQg1wtAKrf5vOhwvbyvH5QXM-wjKA5gCGsYGj34e9vZSZrV3ByTQk3-aneJbxrkuhtehXA_8-p-NK_k3pxXWBuo7WvRKxzIqLrND40HXWaZIAjKzeRHo9qo0wkXTLTy4I565exYELy8v3RRcQixFXZHczimt9vYH7348Mi_b6aHXDaPYHM-IcsijIWa6gRU80I0pXX8SRl0GxQxascAbv3xZDyWS_WuubICEm_ZoEkFa2Oygh6W06QeET0zmWT4MmQHvnpa7Y2jc_&wd=&eqid=94a51c9a0003180e0000000558394570 [12] Luo C, Wu F, Sun J, Chen C W. Efficient measurement generation and pervasive sparsity for compressive data gathering. IEEE Transactions on Wireless Communications, 2010, 9(12): 3728-3738 doi: 10.1109/TWC.2010.092810.100063 [13] 蒋畅江, 石为人, 唐贤伦, 王平, 向敏. 能量均衡的无线传感器网络非均匀分簇路由协议. 软件学报, 2012, 23(5): 1222-1232 doi: 10.3724/SP.J.1001.2012.04061Jiang Chang-Jiang, Shi Wei-Ren, Tang Xian-Lun, Wang Ping, Xiang Min. Energy-balanced unequal clustering routing protocol for wireless sensor networks. Journal of Software, 2012, 23(5): 1222-1232 doi: 10.3724/SP.J.1001.2012.04061 [14] Fafianie S, Bodlaender H L, Nederlof J. Speeding up dynamic programming with representative sets: an experimental evaluation of algorithms for Steiner tree on tree decompositions. Algorithmica, 2015, 71(3): 636-660 doi: 10.1007/s00453-014-9934-0 [15] Ai A, Lapanowski A, Plan Y, Vershynin R. One-bit compressed sensing with non-Gaussian measurements. Linear Algebra and Its Applications, 2014, 441: 222-239 doi: 10.1016/j.laa.2013.04.002 [16] Zheng H F, Yang F, Tian X H, Gan X Y, Wang X B, Xiao S L. Data gathering with compressive sensing in wireless sensor networks: a random walk based approach. IEEE Transactions on Parallel and Distributed Systems, 2015, 26(1): 35-44 doi: 10.1109/TPDS.2014.2308212 [17] Ebrahimi D, Assi C. Network coding-aware compressive data gathering for energy-efficient wireless sensor networks. ACM Transactions on Sensor Networks (TOSN), 2015, 11(4): 1-24 http://cn.bing.com/academic/profile?id=2223601936&encoded=0&v=paper_preview&mkt=zh-cn [18] Malloy M L, Nowak R D. Near-optimal adaptive compressed sensing. IEEE Transactions on Information Theory, 2014, 60(7): 4001-4012 doi: 10.1109/TIT.2014.2321552 [19] 刘冬培, 刘衡竹, 张波涛. 基于准循环双对角阵的LDPC码编码算法. 国防科技大学学报, 2014, 36(2): 156-160 http://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201402026.htmLiu Dong-Pei, Liu Heng-Zhu, Zhang Bo-Tao. Study on encoding algorithms for QC-LDPC codes with dual-diagonal parity check matrix. Journal of National University of Defense Technology, 2014, 36(2): 156-160 http://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201402026.htm [20] Pang S C, Ma T M, Liu T. An improved ant colony optimization with optimal search library for solving the traveling salesman problem. Journal of Computational and Theoretical Nanoscience, 2015, 12(7): 1440-1444 doi: 10.1166/jctn.2015.3910 [21] Akiba T, Maehara T, Kawarabayashi K. Network structural analysis via core-tree-decomposition. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM Press, 2014. 1476-1485 http://www.baidu.com/link?url=MF5eJ3L6E66muJK3ptpWQmXp42drZZjQQx053VeF6KEAWlYO1GhePdhFwdVQw6xTqFnriTt3B3NgKO2w4MBNwKl2ZHsDNVHIAnLR8NfvohruBM7MR4F4UjXRtTbXgAqHAwKUKAXpcwMt3hpHmUXAdtE5Y8kZVJZwjobL6nvpMPhlKmOtVtwMM2OdW3skHkJN1D9nK3Y9y_1OvGDnxBV4IY2hD4b5Z_lW6tJoOng2kHzOgvgnoj2SOcnx3gTTLm0lMi98xOGXzcRCrGiEGmfU4vTdwIZkrQk8urjhc8s_atYvgDmS4DXQs-3g9tT-vn31&wd=&eqid=9a84abb900032e1000000005583945b0 [22] Azad A, Buluç A, Pothen A. A parallel tree grafting algorithm for maximum cardinality matching in bipartite graphs. In: Proceedings of the 2015 IEEE International Parallel and Distributed Processing Symposium (IPDPS). Hyderabad: IEEE Press, 2015. 1075-1084 http://www.baidu.com/link?url=g4lSEsdmJx__UQQ85s50PeW_XRHgi9nfRqJW0hnaWpQYFWouExy6KZ4VeOvyyKAgMbai2Mbx6_ufoZrgHKDGRsJFANZgIDJYvRYRxDwm52EweVmmlOMO2uAi6blVwVqMphAhqB_jJb0A5HcKeQ7A065S6tBVHtneevX39VAm7-XzbQgjw3WoZ_zUCHFNJn2poEF4NpqoJAXswh_T0BdxnK25NpKWV_Ntb5pjk_tQSsM33niZ2VjoxyKcQdJ9ToOuzlPJxTsBWmmzlS8Xoqy1dmpZcZ8tV5hNognSupzNfDxA7dZA_J3uEuFGh9Hafhz3rPrTMnp0r4G7eKb_M-XlPvuRLyNxZgZCDcwTGq07Ffy&wd=&eqid=92442c2f000313d800000005583945e2 [23] Wu X G, Xiong Y, Yang P L, Wan S H, Huang W C. Sparsest random scheduling for compressive data gathering in wireless sensor networks. IEEE Transactions on Wireless Communications, 2014, 13(10): 5867-5877 doi: 10.1109/TWC.2014.2332344