2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

从大数据到大知识:HACE+BigKE

吴信东 何进 陆汝钤 郑南宁

吴信东, 何进, 陆汝钤, 郑南宁. 从大数据到大知识:HACE+BigKE. 自动化学报, 2016, 42(7): 965-982. doi: 10.16383/j.aas.2016.c160239
引用本文: 吴信东, 何进, 陆汝钤, 郑南宁. 从大数据到大知识:HACE+BigKE. 自动化学报, 2016, 42(7): 965-982. doi: 10.16383/j.aas.2016.c160239
WU Xin-Dong, HE Jin, LU Ru-Qian, ZHENG Nan-Ning. From Big Data to Big Knowledge: HACE+BigKE. ACTA AUTOMATICA SINICA, 2016, 42(7): 965-982. doi: 10.16383/j.aas.2016.c160239
Citation: WU Xin-Dong, HE Jin, LU Ru-Qian, ZHENG Nan-Ning. From Big Data to Big Knowledge: HACE+BigKE. ACTA AUTOMATICA SINICA, 2016, 42(7): 965-982. doi: 10.16383/j.aas.2016.c160239

从大数据到大知识:HACE+BigKE

doi: 10.16383/j.aas.2016.c160239
基金项目: 

教育部长江学者和创新团队发展计划“多源海量动态信息处理” IRT13059

国家重点基础研究发展计划(973计划) 2013CB329604

国家自然科学基金 61229301

详细信息
    作者简介:

    何进 合肥工业大学计算机与信息学院硕士研究生.2015年获得安徽财经大学计算机科学与技术系学士学位.主要研究方向为数据挖掘和大数据分析.E-mail:flyingfish93319@126.com

    陆汝钤 中国科学院院士.1959年获得德国耶拿大学数学系学士学位.主要研究方向为知识工程, 基于知识的软件工程, 人工智能.E-mail:rqlu@math.ac.cn

    郑南宁:ZHENG Nan-Ning Member of the Chinese Academy of Engineering, IEEE Fellow, and professor at Xi'an Jiaotong University. He received his Ph. D. degree from Keio University (Japan) in 1985. His research interest covers pattern recognition, machine vision, and image processing

    通讯作者:

    吴信东 长江学者, IEEE Fellow, AAAS Fellow.合肥工业大学计算机与信息学院教授.美国佛蒙特大学计算机与科学系教授.1993年获得英国爱丁堡大学人工智能博士学位.主要研究方向为数据挖掘, 知识库系统, 万维网信息探索.本文通信作者.E-mail:xwu@hfut.edu.cn

From Big Data to Big Knowledge: HACE+BigKE

Funds: 

Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) of the Ministry of Education of China IRT13059

Supported by National Basic Research Program of China (973 Program) 2013CB329604

National Natural Science Foundation of China 61229301

More Information
    Author Bio:

    Master student at the College of Computer Science and Information Engineering, Hefei University of Technology. She received her bachelor degree from Anhui Finance and Economics University in 2015. Her research interest covers data mining and big data analytics

    Member of the Chinese Academy of Sciences. He received his bachelor degree from the University of Jena (Germany) in 1959. His research interest covers knowledge engineering, knowledge based software engineering, and artificial intelligence

    Corresponding author: WU Xin-Dong Professor at the College of Computer Science and Information Engineering, Hefei University of Technology; professor in the Department of Computer Science, the University of Vermont. He received his Ph. D. degree from the University of Edinburgh in 1993. His research interest covers data mining, knowledge based systems, and Web information exploration. Corresponding author of this paper
  • 摘要: 大数据面向异构自治的多源海量数据,旨在挖掘数据间复杂且演化的关联.随着数据采集存储和互联网技术的发展,大数据分析和应用已成为各行各业的研发热点.本文从大数据的本质特征开始,评述现有的几种大数据模型,包括5V,5R,4P和HACE定理,同时从知识建模的角度,介绍一种大数据知识工程模型BigKE来生成大知识,并对大知识的前景进行展望.
  • 图  1  大数据处理框架的修改版[15]

    Fig.  1  A big data processing framework updated form[15]

    图  2  大数据知识工程模型——BigKE [39]

    Fig.  2  quad Big data knowledge engineering——BigKE [39]

  • [1] Beyer M A, Laney D. The importance of "Big Data":a definition[Online], available:https://www.gartner.com/doc/2057415, February 17, 2016
    [2] Marr B. Big data:the 5 Vs everyone must know[Online], http://www.linkedin.com/pulse/20140306073407-64875646-big-data-the-5-vs-everyone-must-know, January 21, 2016
    [3] Mervis J. Agencies rally to tackle big data. Science, 2013, 336(6077):22-22 http://cn.bing.com/academic/profile?id=1978954664&encoded=0&v=paper_preview&mkt=zh-cn
    [4] 王飞跃.软件定义的系统与知识自动化:从牛顿到默顿的平行升华.自动化学报, 2015, 42(1):1-8 http://www.aas.net.cn/CN/abstract/abstract18578.shtml

    Wang Fei-Yue. Software-deined systems and knowledge automation:a parallel paradigm shift from Newton to Merton. Acta Automatica Sinica, 2015, 42(1):1-8 http://www.aas.net.cn/CN/abstract/abstract18578.shtml
    [5] Fish A N. Knowledge Automation:How to Implement Decision Management in Business Processes. USA:Wiley, 2012.
    [6] Fernández A, Del Río S, López V, Bawakid A, Del Jesus M J, Benítez J M, Herrera F. Big data with cloud computing:an insight on the computing environment, MapReduce, and programming frameworks. Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery, 2014, 4(5):380-409 doi: 10.1002/widm.2014.4.issue-5
    [7] Kent S M. Sloan digital sky survey. Science with Astronomical Near-Infrared Sky Surveys. France:Springer, 1994. 27-30
    [8] Labrinidis A, Jagadish H V. Challenges and opportunities with big data. Proceedings of the VLDB Endowment, 2012, 5(12):2032-2033 doi: 10.14778/2367502
    [9] Knoll A, Meinkoehn J. Data fusion using large multi-agent networks:an analysis of network structure and performance. In:Proceedings of the 1994 IEEE International Conference on MFI'94, Multisensor Fusion and Integration for Intelligent Systems (MFI). Las Vegas, NV:IEEE, 1994. 113-120
    [10] Nature Editorial. Community cleverness required. Nature, 2008, 455(7209):1-1 doi: 10.1038/455001a
    [11] Che D R, Safran M, Peng Z Y. From big data to big data mining:challenges, issues, and opportunities. In:Proceedings of the 18th International Conference on Database Systems for Advanced Applications. Wuhan, China:Springer, 2013. 1-15
    [12] Stidston M. Business leaders need R's not V's:the 5 R's of big data[Online], available:https://www.mapr.com/blog/business-leaders-need-r%E2%80%99s-not-v%E2%80%99s-5-r%E2%80%99s-big-data#.U2qmcq1dWIU, December 21, 2015
    [13] 王济, 王琦.中医体质研究与4P医学的实施.中国中西医结合杂志, 2012, 32(5):693-695 http://www.cnki.com.cn/Article/CJFDTOTAL-ZZXJ201205035.htm

    Wang Ji, Wang Qi. Chinese constitution research and the practice of 4P medical model. Chinese Journal of Integrated Traditional and Western Medicine, 2012, 32(5):693-695 http://www.cnki.com.cn/Article/CJFDTOTAL-ZZXJ201205035.htm
    [14] Auffray C, Charron D, Hood L. Predictive, preventive, personalized and participatory medicine:back to the future. Genome Medicine, 2010, 2(8):57-57 doi: 10.1186/gm178
    [15] Wu X D, Zhu X Q, Wu G Q, Ding W. Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(1):97-107 doi: 10.1109/TKDE.2013.109
    [16] Wikipedia. Big data[Online], available:https://en.wikipe-dia.org/wiki/Big_data#Definition, December 12, 2015
    [17] IDC权威定义大数据概念:满足4V标准[Online], available:http://www.d1net.com/bigdata/news/237143.html, December 12, 2015
    [18] Tien J M. Big data:unleashing information. Journal of Systems Science and Systems Engineering, 2013, 22(2):127-151 doi: 10.1007/s11518-013-5219-4
    [19] 王元卓, 靳小龙, 程学旗.网络大数据:现状与展望.计算机学报, 2013, 36(6):1125-1138 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201306001.htm

    Wang Yuan-Zhuo, Jin Xiao-Long, Cheng Xue-Qi. Network big data:present and future. Chinese Journal of Computers, 2013, 36(6):1125-1138 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201306001.htm
    [20] 王卫卫, 李小平, 冯象初, 王斯琪.稀疏子空间聚类综述.自动化学报, 2015, 41(8):1373-1384

    Wang Wei-Wei, Li Xiao-Ping, Feng Xiang-Chu, Wang Si-Qi. A survey on sparse subspace clustering. Acta Automatica Sinica, 2015, 41(8):1373-1384
    [21] Armbrust M, Fox A, Griffith R, Joseph A D, Katz R H, Konwinski A, Lee G, Patterson D A, Rabkin A, Stoica I, Zaharia M. Above the Clouds:A Berkeley View of Cloud Computing, Technical Report UCB/EECS-2009-28, EECS Department, University of California, Berkeley, 2009 http://cn.bing.com/academic/profile?id=2131629857&encoded=0&v=paper_preview&mkt=zh-cn
    [22] Blaabjerg F, Teodorescu R, Liserre M, Timbus A V. Overview of control and grid synchronization for distributed power generation systems. IEEE Transactions on Industrial Electronics, 2006, 53(5):1398-1409 doi: 10.1109/TIE.2006.881997
    [23] Leskovec J, Huttenlocher D, Kleinberg J. Signed networks in social media. In:Proceedings of the 2010 SIGCHI Conference on Human Factors in Computing Systems. New York:ACM, 2010. 1361-1370
    [24] Zikopoulos P, Eaton C. Understanding Big Data:Analytics for Enterprise Class Hadoop and Streaming Data. USA:McGraw-Hill Osborne Media, 2011.
    [25] The four V's of big data[Online], available:http://www.ib-mbigdatahub.com/sites/default/files/infographic_file/4-Vs-of-big-data.jpg, January 21, 2016
    [26] Lazer D, Kennedy R, King G, Vespignan A. The parable of google flu:traps in big data analysis. Science, 2014, 343(6176):1203-1205 doi: 10.1126/science.1248506
    [27] IBM. What is big data?[Online], available:http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html, December 2, 2015
    [28] Barwick H. The "four Vs" of big data. Implementing information infrastructure symposium[Online], available:http://www.computerworld.com.au/article/396198/iiis_four_vs_big_data, December 2, 2015
    [29] 数据并非越大越好:谷歌流感趋势错在哪儿了?[Online], available:http://www.guokr.com/article/438117/, December 2, 2015
    [30] Ghemawat S, Gobioff H, Leung S T. The Google file system. In:Proceedings of the 19th ACM Symposium on Operating Systems Principles. New York:ACM, 2003. 29-43
    [31] Dean J, Ghemawat S. MapReduce:simplified data processing on large clusters. In:Proceedings of the 6th Symposium on Operating Systems Design and Implementation. Berkeley, CA, USA:USENIX Association, 2004. 137-149
    [32] Big data solution offering[Online], available:http://mike2.openmethodology.org/wike/Big_Data_Solution_Offering, November 28, 2015
    [33] White T. Hadoop:The Definitive Guide (2nd Edition). USA:Yahoo Press, 2010. 1-4
    [34] Gupta P, Kumar P, Gopal G. Sentiment analysis on Hadoop with Hadoop streaming. International Journal of Computer Applications, 2015, 121(11):4-8 doi: 10.5120/21582-4651
    [35] Liao S H. Expert system methodologies and applications——a decade review from 1995 to 2004. Expert Systems with Applications, 2005, 28(1):93-103 doi: 10.1016/j.eswa.2004.08.003
    [36] 吴信东, 叶明全, 胡东辉, 吴共庆, 胡学钢, 王浩.普适医疗信息管理与服务的关键技术与挑战.计算机学报, 2012, 35(5):827-845 doi: 10.3724/SP.J.1016.2012.00827

    Wu Xin-Dong, Ye Ming-Quan, Hu Dong-Hui, Wu Gong-Qing, Hu Xue-Gang, Wang Hao. Pervasive medical information management and services:key techniques and challenges. Chinese Journal of Computers, 2012, 35(5):827-845 doi: 10.3724/SP.J.1016.2012.00827
    [37] Auffray C, Chen Z, Hood L. Systems medicine:the future of medical genomics and healthcare. Genome Medicine, 2009, 1(1):2-2 doi: 10.1186/gm2
    [38] 罗旭, 陈博, 罗莉娅, 张宏雁, 吴昊, 李景波. 4P医学理念下医院健康管理体系重构思考.中国医院, 2014, 18(7):61-63 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGYU201407026.htm

    Luo Xu, Chen Bo, Luo Li-Ya, Zhang Hong-Yan, Wu Hao, Li Jing-Bo. Discussion on reconstructing hospital healthcare management under 4P medical conception. Chinese Hospitals, 2014, 18(7):61-63 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGYU201407026.htm
    [39] Wu X D, Chen H H, Wu G Q, Liu J, Zheng Q H, He X F, Zhou A Y, Zhao Z Q, Wei B F, Li Y, Zhang Q P, Zhang S C, Lu R Q, Zheng N N. Knowledge engineering with big data. IEEE Intelligent Systems, 2015, 30(5):46-55 doi: 10.1109/MIS.2015.56
    [40] Klasnja P, Pratt W. Healthcare in the pocket:mapping the space of mobile-phone health interventions. Journal of Biomedical Informatics, 2012, 45(1):184-198 doi: 10.1016/j.jbi.2011.08.017
    [41] Vassis D, Belsis P, Skourlas C, Pantziou G. Providing advanced remote medical treatment services through pervasive environments. Personal and Ubiquitous Computing, 2010, 14(6):563-573 doi: 10.1007/s00779-009-0273-0
    [42] 合肥工业大学吴信东:大数据Processing Framework多层架构[Online], available:http://www.csdn.net/article/2012-07-27/2825305, December 7, 2015
    [43] Petersen W P, Arbenz P. Introduction to Parallel Computing. Oxford:Oxford University Press, 2004.
    [44] Corbett J C, Dean J, Epstein M, Fikes A, Frost C, Furman J J, Ghemawat S, Gubarev A, Heiser C, Hochschild P, Hsieh W, Kanthak S, Kogan E, Li H Y, Lloyd A, Melnik S, Mwaura D, Nagle D, Quinlan S, Rao R, Rolig L, Saito Y, Szymaniak M, Taylor C, Wang R, Woodford D. Spanner:Google's globally-distributed database. ACM Transactions on Computer Systems, 2012, 31(3):Article No.8 http://cn.bing.com/academic/profile?id=2112564224&encoded=0&v=paper_preview&mkt=zh-cn
    [45] Chang F, Dean J, Ghemawat S, Hsieh W C, Wallach D A, Burrows M, Chandra T, Fikes A, Gruber R E. BigTable:a distributed storage system for structured data. ACM Transactions on Computer Systems, 2008, 26(2):Article No.4 http://cn.bing.com/academic/profile?id=1981420413&encoded=0&v=paper_preview&mkt=zh-cn
    [46] Peel M, Rowley J. Information sharing practice in multi-agency working. ASLIB Proceedings, 2010, 62(1):11-28 doi: 10.1108/00012531011015172
    [47] Wang M D, Li B, Zhao Y X, Pu G G. Formalizing Google file system. In:Proceedings of the 20th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC). Singapore:IEEE, 2014. 190-191
    [48] Cormode G, Srivastava D. Anonymized data:generation, models, usage. In:Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data. Providence, RI:ACM, 2009. 1015-1018
    [49] Sweeney L. k-anonymity:a model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2002, 10(5):557-570 doi: 10.1142/S0218488502001648
    [50] Kopanas I, Avouris N M, Daskalaki S. The role of domain knowledge in a large scale data mining project. Methods and Applications of Artificial Intelligence. Thessaloniki, Greece:Springer, 2002. 288-299
    [51] Salton G M, Wong A, Yang C S. A vector space model for automatic indexing. Communications of the ACM, 1975, 18(11):613-620 doi: 10.1145/361219.361220
    [52] Deerwester S C, Dumais S T, Furnas G W, Landauer T K, Harshman R. Indexing by latent semantic analysis. Journal of the American Society for Information Science, 1990, 41(6):391-407 doi: 10.1002/(ISSN)1097-4571
    [53] Freedman E G, Shah P. Toward a model of knowledge-based graph comprehension. Diagrammatic Representation and Inference. Callaway Gardens, GA, USA:Springer, 2002. 18-30
    [54] Aral S, Walker D. Identifying influential and susceptible members of social networks. Science, 2012, 337(6092):337-341 doi: 10.1126/science.1215842
    [55] Centola D. The spread of behavior in an online social network experiment. Science, 2010, 329(5996):1194-1197 doi: 10.1126/science.1185231
    [56] Strassel S, Adams D, Goldberg H, Herr J, Keesing R, Oblinger D, Simpson H, Schrag R, Wright J. The DARPA machine reading program——encouraging linguistic and reasoning research with a series of reading tasks. In:Proceedings of the 7th International Conference on Language Resources and Evaluation. Valletta, Malta:European Language Resources Association, 2010. 986-993
    [57] Studer R, Benjamins V R, Fensel D. Knowledge engineering:principles and methods. Data and Knowledge Engineering, 1998, 25(1-2):161-197 doi: 10.1016/S0169-023X(97)00056-6
    [58] 潘云鹤, 王金龙, 徐从富.数据流频繁模式挖掘研究进展.自动化学报, 2006, 32(4):594-602 http://www.aas.net.cn/CN/abstract/abstract14320.shtml

    Pan Yun-He, Wang Jin-Long, Xu Cong-Fu. State-of-the-art on frequent pattern mining in data streams. Acta Automatica Sinica, 2006, 32(4):594-602 http://www.aas.net.cn/CN/abstract/abstract14320.shtml
    [59] 王珊, 王会举, 覃雄派, 周烜.架构大数据:挑战、现状与展望.计算机学报, 2011, 34(10):1741-1752 doi: 10.3724/SP.J.1016.2011.01741

    Wang Shan, Wang Hui-Ju, Qin Xiong-Pai, Zhou Xuan. Architecting big data:challenges, studies and forecasts. Chinese Journal of Computers, 2011, 34(10):1741-1752 doi: 10.3724/SP.J.1016.2011.01741
    [60] Guha S, Mishra N, Motwani R, O'Callaghan L. Clustering data streams. In:Proceedings of the 41st Annual Symposium on Foundations of Computer Science. Redono Beach, USA:IEEE, 2000. 359-366
    [61] 朱群, 张玉红, 胡学钢, 李培培.一种基于双层窗口的概念漂移数据流分类算法.自动化学报, 2011, 37(9):1077-1084 http://www.aas.net.cn/CN/abstract/abstract17531.shtml

    Zhu Qun, Zhang Yu-Hong, Hu Xue-Gang, Li Pei-Pei. A double-window-based classification algorithm for concept drifting data streams. Acta Automatica Sinica, 2011, 37(9):1077-1084 http://www.aas.net.cn/CN/abstract/abstract17531.shtml
    [62] 张昕, 李晓光, 王大玲, 于戈.数据流中一种快速启发式频繁模式挖掘方法.软件学报, 2005, 16(12):2099-2105 doi: 10.1360/jos162099

    Zhang Xin, Li Xiao-Guang, Wang Da-Ling, Yu Ge. A high-speed heuristic algorithm for mining frequent patterns in data stream. Journal of Software, 2005, 16(12):2099-2105 doi: 10.1360/jos162099
    [63] Wu X D, Yu K, Ding W, Wang H, Zhu X Q. Online feature selection with streaming features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(5):1178-1192 doi: 10.1109/TPAMI.2012.197
    [64] Zhang Q, Zhang P, Long G D, Ding W, Zhang C Q, Wu X D. Towards mining trapezoidal data streams. In:Proceedings of the 2015 IEEE International Conference on Data Mining (ICDM'15). Atlantic City, NJ, USA:IEEE, 2015. 1111-1116
    [65] Wu X D, Yu K, Wang H, Ding W. Online streaming feature selection. In:Proceedings of the 27th International Conference on Machine Learning. Haifa, Israel, 2010. 1159-1166
    [66] Kivinen J, Smola A J, Williamson R C. Online learning with kernels. IEEE Transactions on Signal Processing, 2004, 52(8):2165-2176 doi: 10.1109/TSP.2004.830991
    [67] Kimeldorf G, Wahba G. Some results on Tchebycheffian spline functions. Journal of Mathematical Analysis and Applications, 1971, 33(1):82-95 doi: 10.1016/0022-247X(71)90184-3
    [68] Zhou Z H, Chawla N V, Jin Y C, Williams G J. Big data opportunities and challenges:discussions from data analytics perspectives[Discussion forum]. IEEE Computational Intelligence Magazine, 2014, 9(4):62-74 doi: 10.1109/MCI.2014.2350953
    [69] Vijayakumar S, D'Souza A, Schaal S. Incremental online learning in high dimensions. Neural Computation, 2005, 17(12):2602-2634 doi: 10.1162/089976605774320557
    [70] Hunter A, Summerton R. Fusion rules for context-dependent aggregation of structured news reports. Journal of Applied Non-Classical Logics, 2004, 14(3):329-366 doi: 10.3166/jancl.14.329-366
    [71] Žliobaitė I. Learning under concept drift:an overview. Computer Science——Artificial Intelligence[Online], available:http://arxiv.org/abs/1010.4784, May 31, 2015
    [72] 李建中, 刘显敏.大数据的一个重要方面:数据可用性.计算机研究与发展, 2013, 50(6):1147-1162 http://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201306006.htm

    Li Jian-Zhong, Liu Xian-Min. An important aspect of big data:data usability. Journal of Computer Research and Development, 2013, 50(6):1147-1162 http://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201306006.htm
    [73] Samarati P, Sweeney L. Protecting privacy when disclosing information:k-anonymity and its enforcement through generalization and suppression. In:Proceedings of the 1998 IEEE Symposium on Research in Security and Privacy. Palo Alto, CA:IEEE, 1998. 1-19
    [74] 王超, 杨静, 张健沛.基于轨迹特征及动态邻近性的轨迹匿名方法研究.自动化学报, 2015, 41(2):330-341 http://www.aas.net.cn/CN/abstract/abstract18612.shtml

    Wang Chao, Yang Jing, Zhang Jian-Pei. Research on trajectory privacy preserving method based on trajectory characteristics and dynamic proximity. Acta Automatica Sinica, 2015, 41(2):330-341 http://www.aas.net.cn/CN/abstract/abstract18612.shtml
    [75] Wu X D, Zhu X Q. Mining with noise knowledge:error-aware data mining. IEEE Transactions on Systems, Man, and Cybernetics——Part A:Systems and Humans, 2008, 38(4):917-932 doi: 10.1109/TSMCA.2008.923034
    [76] He H B, Garcia E A. Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9):1263-1284 doi: 10.1109/TKDE.2008.239
    [77] 王飞跃.迈向知识自动化[Online], available:http://www.cas.cn/xw/zjsd/201401/t20140103_4009925.shtml, June 1, 2016
    [78] 邓建玲, 王飞跃, 陈耀斌, 赵向阳.从工业4.0到能源5.0:智能能源系统的概念、内涵及体系框架.自动化学报, 2015, 41(12):2003-2016 http://www.aas.net.cn/CN/abstract/abstract18774.shtml

    Deng Jian-Ling, Wang Fei-Yue, Chen Yao-Bin, Zhao Xiang-Yang. From industries 4.0 to energy 5.0:concept and framework of intelligent energy systems. Acta Automatica Sinica, 2015, 41(12):2003-2016 http://www.aas.net.cn/CN/abstract/abstract18774.shtml
    [79] Twitter Blog. Dispatch from the Denver debate[Online], available:http://blog.twitter.com/2012/100dispatch-reom-denver-debate.html, October 1, 2012
    [80] Chun D X, Jun C J, Zhong C Y, Chao T M, Cong P. Data engineering in information system construction. In:Proceedings of the 2012 IEEE Symposium on Robotics and Applications (ISRA). Kuala Lumpur:IEEE, 2012. 135-137
    [81] Aggarwal C C. . US:Springer, 2007.
    [82] Silva J A, Faria E R, Barros R C, Hruschka E R, de Carvalho A C P L F, Gama J. Data stream clustering:a survey. ACM Computing Surveys, 2013, 46(1):Article No.13 http://cn.bing.com/academic/profile?id=2088340225&encoded=0&v=paper_preview&mkt=zh-cn
    [83] Patil P D, Kulkarni P. Adaptive supervised learning model for training set selection under concept drift data streams. In:Proceedings of the 2013 International Conference on Cloud and Ubiquitous Computing and Emerging Technologies. Pune:IEEE, 2013. 36-41
    [84] Hakkani-Tür D, Heck L, Tur G. Using a knowledge graph and query click logs for unsupervised learning of relation detection. In:Proceedings of the 2013 IEEE International Conference on Acoustics, Speech, and Signal Processing. Vancouver, BC:IEEE, 2013. 8327-8331
    [85] Dantas J R V, Farias P P M. Conceptual navigation in knowledge management environments using NavCon. Information Processing and Management, 2010, 46(4):413-425 doi: 10.1016/j.ipm.2009.08.007
    [86] Xu C J, Li A P, Liu X M. Knowledge fusion and evaluation system with fusion-knowledge measure. In:Proceedings of the 2nd International Symposium on Computational Intelligence and Design. Changsha, China:IEEE, 2009. 127-131
    [87] Shahabi C, Zarkesh A M, Adibi J, Shah V. Knowledge discovery from users web-page navigation. In:Proceedings of the 7th International Workshop on Research Issues in Data Engineering. Birmingham:IEEE, 1997. 20-29
    [88] Baldauf M, Dustdar S, Rosenberg F. A survey on context-aware systems. International Journal of Ad Hoc and Ubiquitous Computing, 2007, 2(4):263-277 doi: 10.1504/IJAHUC.2007.014070
    [89] Herlocker J L, Konstan J A, Terveen L G, Riedl J T. Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems, 2004, 22(1):5-53 doi: 10.1145/963770
    [90] 岳元龙, 左信, 罗雄麟.提高测量可靠性的多传感器数据融合有偏估计方法.自动化学报, 2014, 40(9):1843-1852 http://www.aas.net.cn/CN/abstract/abstract18453.shtml

    Yue Yuan-Long, Zuo Xin, Luo Xiong-Lin. Improving measurement reliability with biased estimation for multi-sensor data fusion. Acta Automatica Sinica, 2014, 40(9):1843-1852 http://www.aas.net.cn/CN/abstract/abstract18453.shtml
    [91] Xu C, Zhang Y Q, Li R Z. On the feasibility of distributed kernel regression for big data. Statistics[Online], available:http://arxiv.org/abs/1505.00869, May 31, 2016
  • 期刊类型引用(95)

    1. 张党,赵永宣,王振军,张映锋. 数据-知识混合驱动的离散制造系统智能控制体系构架研究. 机械工程学报. 2024(06): 1-10+20 . 百度学术
    2. 王鑫,王文生,郭雷风. 基于新一代信息技术融合的防返贫数字治理能力提升机理与路径. 华中农业大学学报(社会科学版). 2023(01): 58-70 . 百度学术
    3. 杨静,王晓,王雨桐,刘忠民,李小双,王飞跃. 平行智能与CPSS:三十年发展的回顾与展望. 自动化学报. 2023(03): 614-634 . 本站查看
    4. 丁志坤,刘志威. 元宇宙背景下建筑业数字化发展趋势研究. 建筑经济. 2023(04): 5-14 . 百度学术
    5. Xiao Xue,Xiangning Yu,Fei-Yue Wang. ChatGPT Chats on Computational Experiments: From Interactive Intelligence to Imaginative Intelligence for Design of Artificial Societies and Optimization of Foundational Models. IEEE/CAA Journal of Automatica Sinica. 2023(06): 1357-1360 . 必应学术
    6. 全燕,张入迁. 平台化知识生产的逻辑偏误与AIGC下的建设进路. 南京社会科学. 2023(06): 150-160 . 百度学术
    7. 薛禹胜,吴巨爱,谢东亮,黄杰,蔡斌. 关于在决策推演中计入博弈行为的评述. 电力系统自动化. 2023(16): 1-9 . 百度学术
    8. 白天翔,王双翌,刘雅婷,李汉忠,闻艺. 平行医疗机器人. 智能科学与技术学报. 2023(02): 222-233 . 百度学术
    9. 陈晓光,韩金朋,杨满智,王晓,刘昕,王震,王飞跃. 灵境卫士:基于ACP的网络安全平行监管研究. 智能科学与技术学报. 2023(02): 247-253 . 百度学术
    10. 李诗濛,王飞跃. 平行设计:面向平行制造体系的非标机械方案设计流程. 智能科学与技术学报. 2023(02): 274-282 . 百度学术
    11. 王上. 金字塔结构逻辑运用二值脉冲对简单图形处理. 自动化学报. 2022(02): 615-626 . 本站查看
    12. 张向文,王飞跃. 平行轮胎的基本架构与关键技术. 智能科学与技术学报. 2022(03): 445-457 . 百度学术
    13. 曹建平,王晓,贺邓超,张文彬,王飞跃. 基于ACP方法的平行战场情报系统. 指挥与控制学报. 2022(03): 332-340 . 百度学术
    14. 李强,阳东升,孙江生,刘建军,费爱国,王飞跃. “社会认知战”:时代背景、概念机理及引领性技术. 指挥与控制学报. 2021(02): 97-106 . 百度学术
    15. 吴宇震,张俊,高天露,孙玉健,刘金旭. 平行港口:智慧绿色时代下港口工业智联网新形态与体系结构. 智能科学与技术学报. 2021(02): 218-227 . 百度学术
    16. 朱静,王飞跃,王戈,田永林,袁勇,王晓,齐红威,贾晓丰. 联邦控制:面向信息安全和权益保护的分布式控制方法. 自动化学报. 2021(08): 1912-1920 . 本站查看
    17. 王飞跃. 平行哲学与智能技术:平行产业与智慧社会的对偶方程与测试基础. 智能科学与技术学报. 2021(03): 245-255 . 百度学术
    18. 杨曦宇. 大数据时代知识自动化及知识使用方式的变革. 中阿科技论坛(中英文). 2021(10): 157-159 . 百度学术
    19. 王拥军,王飞跃,王戈,王晓,王伊龙,李瑞. 平行医院:从医院信息管理系统到智慧医院操作系统. 自动化学报. 2021(11): 2585-2599 . 本站查看
    20. 王飞跃,蒋怀光. 平行电池:智能生态化电池技术与服务体系的框架和流程. 智能科学与技术学报. 2021(04): 521-531 . 百度学术
    21. 王飞跃. 数字医生与平行医疗:从医疗知识自动化到系统化智能医学. 协和医学杂志. 2021(06): 829-833 . 百度学术
    22. 孙伟卿,郑钰琦. 能源5.0:迈入虚实互动的平行化时代. 自动化仪表. 2020(01): 1-9+15 . 百度学术
    23. Gang Xiong,Xisong Dong,Hao Lu,Dayong Shen. Research Progress of Parallel Control and Management. IEEE/CAA Journal of Automatica Sinica. 2020(02): 355-367 . 必应学术
    24. 梁玉成,政光景. 打破技术治理悖论——从“默顿系统”迈向“牛顿系统”的技术治理转型. 社会发展研究. 2020(01): 4-22+242 . 百度学术
    25. 于洪,何德牛,王国胤,李劼,谢永芳. 大数据智能决策. 自动化学报. 2020(05): 878-896 . 本站查看
    26. 梁玉成,张咏雪. 新技术对青年劳动者的影响研究. 青年探索. 2020(04): 5-21 . 百度学术
    27. 康孟珍,王秀娟,王浩宇,华净,董永亮,徐振强,李冬,王飞跃. 数字合作社:产销融合的农业智能系统. 农业现代化研究. 2020(04): 687-698 . 百度学术
    28. 张俊,许沛东,王飞跃. 平行系统和数字孪生的一种数据驱动形式表示及计算框架. 自动化学报. 2020(07): 1346-1356 . 本站查看
    29. 郭崇岭,赵野. 区块链技术在空间信息智能感知领域的应用综述. 计算机科学. 2020(S2): 354-358+362 . 百度学术
    30. 肖祥武,王丰,王晓辉,周宏贵,张辽. 面向工业互联网的智慧电厂仿生体系架构及信息物理系统. 电工技术学报. 2020(23): 4898-4911 . 百度学术
    31. 赵志耘,孙星恺,王晓,高芳,王飞跃. 组织情报组织智能与系统情报系统智能:从基于情景的情报到基于模型的情报. 情报学报. 2020(12): 1283-1294 . 百度学术
    32. 阳东升,闫晶晶. 宏观作战体系C2活动及过程机理分析. 指挥与控制学报. 2020(04): 393-401 . 百度学术
    33. 王飞跃,王艳芬,陈薏竹,田永林,齐红威,王晓,张卫山,张俊,袁勇. 联邦生态:从联邦数据到联邦智能. 智能科学与技术学报. 2020(04): 305-311 . 百度学术
    34. 彭浩,毛义华,苏星. 基于平行系统理论的塔式起重机监管系统设计与应用. 施工技术. 2020(24): 19-23+46 . 百度学术
    35. 刘志强,祝震,张国朋. 流程行业知识自动化的探索与实践:牛顿-图灵-默顿网络. 铜业工程. 2019(01): 58-62 . 百度学术
    36. 欧阳丽炜,王帅,袁勇,倪晓春,王飞跃. 智能合约:架构及进展. 自动化学报. 2019(03): 445-457 . 本站查看
    37. 郑松,吴晓林,王飞跃,林东东,郑蓉,柯伟林,池新栋,陈德旺. 平行系统方法在自动化集装箱码头中的应用研究. 自动化学报. 2019(03): 490-504 . 本站查看
    38. 景轩,姚锡凡. 走向社会信息物理生产系统. 自动化学报. 2019(04): 637-656 . 本站查看
    39. 张潮,万成林,范宇楠,沈智镔,贺挺,詹全忠. 水利部机关网络SDN优化升级实践. 水利信息化. 2019(03): 62-67 . 百度学术
    40. 沈宇,王晓,韩双双,陈龙,王飞跃. 代理技术Agent在智能车辆与驾驶中的应用现状. 指挥与控制学报. 2019(02): 87-98 . 百度学术
    41. 秦方博,徐德. 机器人操作技能模型综述. 自动化学报. 2019(08): 1401-1418 . 本站查看
    42. 沈大勇,王晓,刘胜. 平行装卸:迈向智慧物流的智能技术. 智能科学与技术学报. 2019(01): 34-39 . 百度学术
    43. 康孟珍,王秀娟,华净,王浩宇,王飞跃. 平行农业:迈向智慧农业的智能技术. 智能科学与技术学报. 2019(02): 107-117 . 百度学术
    44. 杨超,高玉,艾云峰,田滨,陈龙,王健,王飞跃. 端对端平行无人矿山系统及其关键技术. 智能科学与技术学报. 2019(03): 228-240 . 百度学术
    45. 张梅,陈鸰,王飞跃,王晓,国元元,杨田. 平行胃肠:基于ACP的智能胃肠疾病诊疗. 模式识别与人工智能. 2019(12): 1061-1071 . 百度学术
    46. 孙星恺,王晓,陆浩. 面向活动的网络媒体监测与建模分析:IVFC案例解析. 智能科学与技术学报. 2019(04): 352-368 . 百度学术
    47. 杨林瑶,陈思远,王晓,张俊,王成红. 数字孪生与平行系统:发展现状、对比及展望. 自动化学报. 2019(11): 2001-2031 . 本站查看
    48. 吕宜生,陈圆圆,金峻臣,李镇江,叶佩军,朱凤华. 平行交通:虚实互动的智能交通管理与控制. 智能科学与技术学报. 2019(01): 21-33 . 百度学术
    49. 张俊,王飞跃,方舟. 社会能源:从社会中获取能源. 智能科学与技术学报. 2019(01): 7-20 . 百度学术
    50. 吕宜生,王飞跃,张宇,张晓东. 虚实互动的平行城市:基本框架、方法与应用. 智能科学与技术学报. 2019(03): 311-317 . 百度学术
    51. 李晓媛,曾庆山,师丽. 自动控制适应大数据工业应用的改革探索. 教育现代化. 2018(27): 52-53+69 . 百度学术
    52. 刘烁,王帅,孟庆振,叶佩军,王涛,黄文林,王飞跃. 基于ACP行为动力学的犯罪主体行为平行建模分析. 自动化学报. 2018(02): 251-261 . 本站查看
    53. 尹培丽,王建华,陈阳泉,王飞跃. 平行测量:复杂测量系统的一个新型理论框架及案例研究. 自动化学报. 2018(03): 425-433 . 本站查看
    54. 孙秋野,胡旌伟,杨凌霄,张化光. 基于GAN技术的自能源混合建模与参数辨识方法. 自动化学报. 2018(05): 901-914 . 本站查看
    55. 王飞跃,张梅,孟祥冰,王雁,马娇楠,刘武,王晓. 平行眼:基于ACP的智能眼科诊疗. 模式识别与人工智能. 2018(06): 495-504 . 百度学术
    56. 吴文平,潘正高,卢彪. 基于平行学习的农业大数据异常预测系统的设计. 绥化学院学报. 2018(05): 158-160 . 百度学术
    57. 陈龙,宇文旋,曹东璞,李力,王飞跃. 平行无人系统. 无人系统技术. 2018(01): 23-37 . 百度学术
    58. 杨曦宇. 知识自动化相关概念辨析及应用展望. 现代工业经济和信息化. 2018(04): 9-11 . 百度学术
    59. 鄢章华,刘蕾,李倩. 区块链体系下平行社会的协同演化. 中国科技论坛. 2018(06): 50-58 . 百度学术
    60. 刘腾,于会龙,田滨,艾云峰,陈龙. 智能车的智能指挥与控制:基本方法与系统结构. 指挥与控制学报. 2018(01): 22-31 . 百度学术
    61. 阳东升,王坤峰,陈德旺,包战,苏振东,王睿,赵学亮,王雨桐,王飞跃. 平行航母:从数字航母到智能航母. 指挥与控制学报. 2018(02): 101-110 . 百度学术
    62. 王飞跃,张军,张俊,王晓. 工业智联网:基本概念、关键技术与核心应用. 自动化学报. 2018(09): 1606-1617 . 本站查看
    63. 李立军,王晓,商秀芹. 平行制造及其在纺织鞋服产业中的应用. 科技导报. 2018(21): 48-55 . 百度学术
    64. 王飞跃,高彦臣,商秀芹,张俊. 平行制造与工业5.0:从虚拟制造到智能制造. 科技导报. 2018(21): 10-22 . 百度学术
    65. 张俊,王飞跃,林洁瑜. 平行智能与智慧能源:全面融合人因的社会能源技术. 中国电力. 2018(10): 26-31 . 百度学术
    66. 王飞跃,孙奇,江国进,谭珂,张俊,侯家琛,熊刚,朱凤华,韩双双,董西松,王嫘. 核能5.0:智能时代的核电工业新形态与体系架构. 自动化学报. 2018(05): 922-934 . 本站查看
    67. 王晓,要婷婷,韩双双,曹东璞,王飞跃. 平行车联网:基于ACP的智能车辆网联管理与控制. 自动化学报. 2018(08): 1391-1404 . 本站查看
    68. 程乐峰,余涛,张孝顺,殷林飞,瞿凯平. 信息–物理–社会融合的智慧能源调度机器人及其知识自动化:框架、技术与挑战. 中国电机工程学报. 2018(01): 25-40+340 . 百度学术
    69. 白天翔,王帅,沈震,曹东璞,郑南宁,王飞跃. 平行机器人与平行无人系统:框架、结构、过程、平台及其应用. 自动化学报. 2017(02): 161-175 . 本站查看
    70. 化成城,王宏,卢绍文,王宏. 面向知识自动化的磨矿系统操作员脑认知特征与控制效果的相关分析. 自动化学报. 2017(11): 1898-1907 . 本站查看
    71. 曾帅,王帅,袁勇,倪晓春,欧阳永基. 面向知识自动化的自动问答研究进展. 自动化学报. 2017(09): 1491-1508 . 本站查看
    72. 袁勇,周涛,周傲英,段永朝,王飞跃. 区块链技术:从数据智能到知识自动化. 自动化学报. 2017(09): 1485-1490 . 本站查看
    73. 刘阳,张天石,李世超,佟星,曾鹏,于海斌. 基于Bitmap的油水井采注优化实时推理引擎. 自动化学报. 2017(06): 1007-1016 . 本站查看
    74. 秦蕊,曾帅,李娟娟,袁勇. 基于深度强化学习的平行企业资源计划. 自动化学报. 2017(09): 1588-1596 . 本站查看
    75. 王飞跃,张梅,孟祥冰,王蓉,王晓,张志成,陈鸰,葛均华,杨田. 平行手术:基于ACP的智能手术计算方法. 模式识别与人工智能. 2017(11): 961-970 . 百度学术
    76. 王飞跃,李长贵,国元元,王静,王晓,邱天雨,孟祥冰,施小博. 平行高特:基于ACP的平行痛风诊疗系统框架. 模式识别与人工智能. 2017(12): 1057-1068 . 百度学术
    77. 刘志强,吴军. 操作智能化在贵溪冶炼厂铜熔炼系统中的应用. 铜业工程. 2017(06): 80-83 . 百度学术
    78. Jun Jason Zhang,David Wenzhong Gao,Yingchen Zhang,Xiao Wang,Xiangyang Zhao,Dongliang Duan,Xiaoxiao Dai,Jun Hao,Fei-Yue Wang. Social Energy:Mining Energy From the Society. IEEE/CAA Journal of Automatica Sinica. 2017(03): 466-482 . 必应学术
    79. 李力,林懿伦,曹东璞,郑南宁,王飞跃. 平行学习—机器学习的一个新型理论框架. 自动化学报. 2017(01): 1-8 . 本站查看
    80. 袁勇,王飞跃. 平行区块链:概念、方法与内涵解析. 自动化学报. 2017(10): 1703-1712 . 本站查看
    81. 王飞跃,张俊. 智联网:概念、问题和平台. 自动化学报. 2017(12): 2061-2070 . 本站查看
    82. 刘昕,王晓,张卫山,汪建基,王飞跃. 平行数据:从大数据到数据智能. 模式识别与人工智能. 2017(08): 673-681 . 百度学术
    83. 刘朝华,李小花,吴亮红,张红强,周少武. 大数据背景下地方高校自动化专业人才培养探究. 当代教育理论与实践. 2016(06): 70-72 . 百度学术
    84. 陈晓. 大数据时代知识自动化的关键问题、对策及展望. 科技视界. 2016(09): 249+285 . 百度学术
    85. 吴信东,何进,陆汝钤,郑南宁. 从大数据到大知识:HACE+BigKE. 自动化学报. 2016(07): 965-982 . 本站查看
    86. 刘烁,王帅,傅焕章,王飞跃. 软件定义的犯罪现场分析过程及其知识自动化方案. 模式识别与人工智能. 2016(10): 876-883 . 百度学术
    87. Fei-Yue Wang. Control 5.0: From Newton to Merton in Popper's Cyber-Social-Physical Spaces. IEEE/CAA Journal of Automatica Sinica. 2016(03): 233-234 . 必应学术
    88. 黄红兵,李贤玉,王学宁,张桂元. 作战计划生成中的理论与技术问题:一种综合视角. 指挥与控制学报. 2016(02): 98-113 . 百度学术
    89. 袁勇,王飞跃. 区块链技术发展现状与展望. 自动化学报. 2016(04): 481-494 . 本站查看
    90. 王飞跃,王晓,袁勇,王涛,林懿伦. 社会计算与计算社会:智慧社会的基础与必然. Science Bulletin. 2015(Z1): 460-469 . 百度学术
    91. 王飞跃. 从激光到激活:钱学森的情报理念与平行情报体系. 自动化学报. 2015(06): 1053-1061 . 本站查看
    92. 邓建玲,王飞跃,陈耀斌,赵向阳. 从工业4.0到能源5.0:智能能源系统的概念、内涵及体系框架. 自动化学报. 2015(12): 2003-2016 . 本站查看
    93. 高春能,潘庭龙. 面粉加工企业从生产自动化、信息自动化迈向知识自动化. 粮食加工. 2015(05): 9-11 . 百度学术
    94. 王飞跃. 指控5.0:平行时代的智能指挥与控制体系. 指挥与控制学报. 2015(01): 107-120 . 百度学术
    95. 王飞跃. 从工程控制到社会管理:控制论Cybernetics本源的个人认识与展望. 控制理论与应用. 2014(12): 1621-1625 . 百度学术

    其他类型引用(29)

  • 加载中
图(2)
计量
  • 文章访问数:  3843
  • HTML全文浏览量:  613
  • PDF下载量:  2948
  • 被引次数: 124
出版历程
  • 收稿日期:  2016-03-03
  • 录用日期:  2016-05-31
  • 刊出日期:  2016-07-01

目录

    /

    返回文章
    返回