2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于柔性气压驱动器的可穿戴式腰部助力机器人研究

李向攀 韩建海 郭冰菁 张彦斌 赵菲菲 则次俊郎

李向攀, 韩建海, 郭冰菁, 张彦斌, 赵菲菲, 则次俊郎. 基于柔性气压驱动器的可穿戴式腰部助力机器人研究. 自动化学报, 2016, 42(12): 1849-1858. doi: 10.16383/j.aas.2016.c160211
引用本文: 李向攀, 韩建海, 郭冰菁, 张彦斌, 赵菲菲, 则次俊郎. 基于柔性气压驱动器的可穿戴式腰部助力机器人研究. 自动化学报, 2016, 42(12): 1849-1858. doi: 10.16383/j.aas.2016.c160211
LI Xiang-Pan, HAN Jian-Hai, GUO Bing-Jing, ZHANG Yan-Bin, ZHAO Fei-Fei, NORITSUGU Toshiro. Development of Wearable Power Assist Robot for Low Back Support Using Soft Pneumatic Actuators. ACTA AUTOMATICA SINICA, 2016, 42(12): 1849-1858. doi: 10.16383/j.aas.2016.c160211
Citation: LI Xiang-Pan, HAN Jian-Hai, GUO Bing-Jing, ZHANG Yan-Bin, ZHAO Fei-Fei, NORITSUGU Toshiro. Development of Wearable Power Assist Robot for Low Back Support Using Soft Pneumatic Actuators. ACTA AUTOMATICA SINICA, 2016, 42(12): 1849-1858. doi: 10.16383/j.aas.2016.c160211

基于柔性气压驱动器的可穿戴式腰部助力机器人研究

doi: 10.16383/j.aas.2016.c160211
基金项目: 

河南省教育厅科学技术研究重点项目 14 A460025

洛阳市科技局洛阳市科技计划项目 1401006A

详细信息
    作者简介:

    李向攀 河南科技大学机电工程学院讲师.2013年获得日本冈山大学博士学位.主要研究方向为康复机器人, 助力机器人.E-mail:xiangpanli@haust.edu.cn

    郭冰菁 河南科技大学机电工程学院副教授.主要研究方向为康复机器人, 机器人控制, 流体传动与控制.E-mail:bingjing@haust.edu.cn

    张彦斌 河南科技大学机电工程学院教授.2008年于西安理工大学机械与精密仪器工程学院机械工程专业获博士学位.主要研究方向为并联机器人理论.E-mail:yanbin zh@163.com

    赵菲菲 博士, 日本津山高等专门学校讲师.主要研究方向为流体传动与控制, 柔性机器手.E-mail:chofeifei@gmail.com

    则次俊郎 日本津山高等专门学校校长.主要研究方向为智能机械制御学, 人间康复福祉工学.E-mail:toshiro@tsuyama-ct.ac.jp

    通讯作者:

    韩建海 河南科技大学教授.2002年获得日本冈山大学工学博士学位.主要研究方向为数字控制技术, 康复训练机器人, 流体伺服控制技术.本文通信作者.E-mail:jianhaihan@haust.edu.cn

Development of Wearable Power Assist Robot for Low Back Support Using Soft Pneumatic Actuators

Funds: 

Foundation of Henan Educational Committee 14 A460025

Science and Technology Planning Project of Luoyang 1401006A

More Information
    Author Bio:

    Lecturer at the School of Mechatronics Engineering, Henan University of Science and Technology. He received his Ph. D. degree from Okayama University, Japan in 2013. His research interest covers rehabilitation robot and power assist robot

    Associate professor at the School of Mechatronics Engineering, Henan University of Science and Technology. Her research interest covers rehabilitation robot, robot control, and fluid transmission and control

    Professor at the School of Mechatronics Engineering, Henan University of Science and Technology. He received his Ph. D. degree in mechanical engineering from the School of Mechanical and Precision Instrument Engineering, Xi0an University of Technology in 2008. His main research interest is theory of parallel robots

    Ph. D., lecturer at Tsuyama National College of Technology, Japan. Her research interest covers fluid transmission and control, soft robot hand

    President at Tsuyama National College of Technology, Japan. His research interest covers intelligent mechanical control, human biomedical engineering, rehabilitation science and welfare engineering

    Corresponding author: HAN Jian-Hai Professor at Henan University of Science and Technology. He received his Ph. D. degree from Okayama University, Japan in 2002. His research interest covers numerical control technology, rehabilitation training robots, and fluid power servo control technology. Corresponding author of this paper
  • 摘要: 针对老龄化社会对于康复和看护助力搬运的需要,提出了用气压驱动器实现轻量、柔性助力、穿戴舒适的可穿戴式腰部助力机器人.机器人采用无外骨骼的结构设计,可以给护理人员在提升重物和静态保持作业时输出腰部所需助力,降低下腰痛(Low back pain,LBP)致病风险.通过对重物搬运作业中穿戴者竖脊肌表面肌电信号(Surface electromyography,sEMG)评估、基于测力平台最大搬举重量测试、静态弯腰负重作业下人体重心(Center of gravity,COG)移动轨迹等相关实验,验证了助力有效性.
    1)  本文责任编委 赵新刚
  • 图  1  腰部助力机器人

    Fig.  1  Power assist robot for low back support

    图  2  脊柱悬臂梁模型和助力机器人机理

    Fig.  2  Cantilever model of spine and mechanism of power assist robot for low back support

    图  3  伸长型气动人工肌肉

    Fig.  3  Elongation type pneumatic rubber artificial muscle

    图  4  输出力-长度特性

    Fig.  4  Relationship between displacement and contractile force

    图  5  层状气压驱动器结构

    Fig.  5  Structure of layer type pneumatic actuator

    图  6  表面肌电信号评估实验

    Fig.  6  sEMG during lifting load experiment

    图  7  背部竖脊肌表面肌电信号评估(负载: 12.6 kg)

    Fig.  7  Evaluation by measuring sEMG signal of erector spinae muscles (loads: 12.6 kg)

    图  8  地板到腰部最大提升容量测试

    Fig.  8  Floor to waist lifting test on PrimusRS

    图  9  最大提升重量和输出功率

    Fig.  9  Maximum lifting weight and output power

    图  10  脊柱稳定性需要主动肌-拮抗肌协同作用[34]

    Fig.  10  Spine stability requires agonist-antagonist co-activation

    图  11  基于测力台的静姿负重保持实验

    Fig.  11  Static holding test on force plate

    图  12  重心移动轨迹和速度点离散分布

    Fig.  12  The moving length and velocity distribution of the COG

    表  1  人体重心移动位移(m)

    Table  1  The moving length of the COG (m)

    Unit With assist Without assist
    LNGX 0.1919 0.2628
    LNGY 0.332 0.4398
    LNG 0.4186 0.5613
    下载: 导出CSV
  • [1] 中华人民共和国国家统计局国家数据年度数据查询:人口年龄结构和抚养比[Online], available:http://data.stats.gov.cn/easyq-uery.htm?cn=C01, August 15, 2016

    National Bureau of Statistics of the People's Republic of China Annual Data Inquiry:Age Composition and Dependency Ratio of Population[Online], available:http://data.stats.gov.cn/easyquery.htm?cn=C01, August 15, 2016
    [2] 陈佳丽, 白阳静.护理人员下腰痛的影响因素研究进展.护理学报, 2012, 19(7A):13-16 http://www.cnki.com.cn/Article/CJFDTOTAL-NFHL201213007.htm

    Chen Jia-Li, Bai Yang-Jing. Impact factors of low back pain in nurses. Journal of Nursing (China), 2012, 19(7A):13-16 http://www.cnki.com.cn/Article/CJFDTOTAL-NFHL201213007.htm
    [3] 王田苗, 陶永, 陈阳.服务机器人技术研究现状与发展趋势.中国科学:信息科学, 2012, 42(9):1049-1066 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201209001.htm

    Wang Tian-Miao, Tao Yong, Chen Yang. Research status and development trends of the service robotic technology. Scientia Sinica Informationis, 2012, 42(9):1049-1066 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201209001.htm
    [4] 张佳帆, 陈鹰, 杨灿军.柔性外骨骼人机智能系统.北京:科学出版社, 2011.

    Zhang Jia-Fan, Chen Ying, Yang Can-Jun. Flexible Exoskeleton Intelligent Man-machine System. Beijing:Science Press, 2011.
    [5] 胡进, 侯增广, 陈翼雄, 张峰, 王卫群.下肢康复机器人及其交互控制方法.自动化学报, 2014, 40(11):2377-2390 http://www.aas.net.cn/CN/abstract/abstract18514.shtml

    Hu Jin, Hou Zeng-Guang, Chen Yi-Xiong, Zhang Feng, Wang Wei-Qun. Lower limb rehabilitation robots and in-teractive control methods. Acta Automatica Sinica, 2014, 40(11):2377-2390 http://www.aas.net.cn/CN/abstract/abstract18514.shtml
    [6] 欧阳小平, 范伯骞, 丁硕.助力型下肢外骨骼机器人现状及展望.科技导报, 2015, 33(23):92-99 http://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201523036.htm

    Ouyang Xiao-Ping, Fan Bo-Qian, Ding Shuo. Status and prospects of the lower extremity exoskeleton robots for human power augmentation. Science and Technology Review, 2015, 33(23):92-99 http://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201523036.htm
    [7] Ishii M, Yamamoto K, Hyodo K. Stand-alone wearable power assist suit-development and availability. Journal of Robotics and Mechatronics, 2005, 17(5):575-583 doi: 10.20965/jrm.issn.1883-8049
    [8] Sankai Y. HAL:hybrid assistive limb based on cybernics. Robotics Research. Berlin Heidelberg:Springer, 2011. 25-34
    [9] Nabeshima C, Shingu M, Kawamoto H, Sankai Y. Risk management for wearable walking assistant robot:a case study of robot suit HAL for well-being. Journal of the Robotics Society of Japan, 2014, 32(4):380-385 doi: 10.7210/jrsj.32.380
    [10] Kobayashi H, Shiiban T, Ishida Y. Realization of all 7 motions for the upper limb by a muscle suit. Journal of Robotics and Mechatronics, 2004, 16(5):504-512 doi: 10.20965/jrm.issn.1883-8049
    [11] Muramatsu Y, Kobayashi H. Assessment of local muscle fatigue by NIRS-development and evaluation of muscle suit. ROBOMECH Journal, 2014, 1:19 doi: 10.1186/s40648-014-0019-2
    [12] Chu A, Kazerooni H, Zoss A. On the biomimetic design of the Berkeley lower extremity exoskeleton (BLEEX). In:Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain:IEEE, 2005. 4345-4352
    [13] Kazerooni H, Racine J L, Huang L H, Steger R. On the control of the Berkeley lower extremity exoskeleton (BLEEX). In:Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain:IEEE, 2005. 4353-4360
    [14] 孙建, 余永, 葛运建, 陈峰, 沈煌焕.基于接触力信息的可穿戴型下肢助力机器人传感系统研究.中国科学技术大学学报, 2008, 38(12):1432-1438 http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJD200812013.htm

    Sun Jian, Yu Yong, Ge Yun-Jian, Chen Feng, Shen Huang-Huan. Research on multi-sensors perceptual system of wearable power assist leg based on interaction force signal and joint angle signal. Journal of University of Science and Technology of China, 2008, 38(12):1432-1438 http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJD200812013.htm
    [15] 文忠, 钱晋武, 沈林勇, 章亚男.基于阻抗控制的步行康复训练机器人的轨迹自适应.机器人, 2011, 33(2):142-149 doi: 10.3724/SP.J.1218.2011.00142

    Wen Zhong, Qian Jin-Wu, Shen Lin-Yong, Zhang Ya-Nan. Trajectory adaptation for impedance control based walking rehabilitation training robot. Robot, 2011, 33(2):142-149 doi: 10.3724/SP.J.1218.2011.00142
    [16] 杨巍, 张秀峰, 杨灿军, 吴海杰.基于人机5杆模型的下肢外骨骼系统设计.浙江大学学报(工学版), 2014, 48(3):430-435 http://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201403009.htm

    Yang Wei, Zhang Xiu-Feng, Yang Can-Jun, Wu Hai-Jie. Design of a lower extremity exoskeleton based on 5-bar human machine model. Journal of Zhejiang University (Engineering Science), 2014, 48(3):430-435 http://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201403009.htm
    [17] 韩亚丽, 祁兵, 于建铭, 宋爱国, 朱松青.面向助力膝关节外骨骼的弹性驱动器研制及实验研究.机器人, 2014, 36(6):668-675 http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201406005.htm

    Han Ya-Li, Qi Bing, Yu Jian-Ming, Song Ai-Guo, Zhu Song-Qing. Development and experimental study of elastic actuator for a power-assisted knee exoskeleton. Robot, 2014, 36(6):668-675 http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201406005.htm
    [18] 陈昌铎, 韩建海, 李向攀.基于气动比例技术的下肢康复训练外骨骼机构控制.液压与气动, 2014, (6):63-66 http://www.cnki.com.cn/Article/CJFDTOTAL-YYYQ201406017.htm

    Chen Chang-Duo, Han Jian-Hai, Li Xiang-Pan. Exoskeleton control for lower limb rehabilitation training based on pneumatic proportion technology. Chinese Hydraulics and Pneumatics, 2014, (6):63-66 http://www.cnki.com.cn/Article/CJFDTOTAL-YYYQ201406017.htm
    [19] Liao Y, Zhou Z H, Wang Q N. BioKEX:a bionic knee exoskeleton with proxy-based sliding mode control. In:Proceedings of the 2015 IEEE International Conference on Industrial Technology. Seville, Spain:IEEE, 2015. 125-130
    [20] Rus D, Tolley M T. Design, fabrication and control of soft robots. Nature, 2015, 521(7553):467-475 doi: 10.1038/nature14543
    [21] Pfeifer R, Marques H G, Iida F. Soft robotics:the next generation of intelligent machines. In:Proceedings of the 23rd International Joint Conference on Artificial Intelligence. North America, 2013. 5-11
    [22] Pfeifer R, Iida F, Lungarella M. Cognition from the bottom up:on biological inspiration, body morphology, and soft materials. Trends in Cognitive Sciences, 2014, 18(8):404-413 doi: 10.1016/j.tics.2014.04.004
    [23] Warrior Web Task B:Advanced Technology Development[Online], available:https://www.fbo.gov/index?s=opportu-nity&mode=form&id=a70c14447eea6c974d7b1ab15b795ddf&tab, August 15, 2016
    [24] Wehner M, Quinlivan B, Aubin P M, Martinez-Villalpando E, Baumann M, Stirling L, Holt K, Wood R, Walsh C. A lightweight soft exosuit for gait assistance. In:Proceedings of the 2013 International Conference on Robotics and Automation (ICRA). Karlsruhe, Germany:IEEE, 2013. 3362-3369
    [25] Imamura Y, Tanaka T, Suzuki Y, Takizawa K, Yamanaka M. Motion-based-design of elastic material for passive assistive device using musculoskeletal model. Journal of Robotics and Mechatronics, 2011, 23(6):978-990 doi: 10.20965/jrm.issn.1883-8049
    [26] Imamura Y, Tanaka T, Suzuki Y, Takizawa K, Yamanaka M. Analysis of trunk stabilization effect by passive power-assist device. Journal of Robotics and Mechatronics, 2014, 26(6):791-798 doi: 10.20965/jrm.issn.1883-8049
    [27] Abdoli-Eramaki M, Stevenson J M, Reid S A, Bryant T J. Mathematical and empirical proof of principle for an on-body personal lift augmentation device (PLAD). Journal of Biomechanics, 2007, 40(8):1694-1700 doi: 10.1016/j.jbiomech.2006.09.006
    [28] Abdoli-E M, Stevenson J M. The effect of on-body lift assistive device on the lumbar 3D dynamic moments and EMG during asymmetric freestyle lifting. Clinical Biomechanics, 2008, 23(3):372-380 doi: 10.1016/j.clinbiomech.2007.10.012
    [29] Chaffin D B, Andersson G B J, Martin B J. Occupational Biomechanics (4th edition). New York:Wiley, 2006.
    [30] Schecter W S, Florian B, Margareta N. Biomechanics of the lumbar spine. Basic Biomechanics of the Musculoskeletal System (4th edition). Philadelphia:Lippincott Williams and Wilkins, 2012. 254-285
    [31] Noritsugu T, Takaiwa M, Sasaki D. Development of power assist wear using pneumatic rubber artificial muscles. Journal of Robotics and Mechatronics, 2009, 21(5):607-613 doi: 10.20965/jrm.issn.1883-8049
    [32] Chou C P, Hannaford B. Static and dynamic characteristics of McKibben pneumatic artificial muscles. In:Proceedings of the 1994 IEEE International Conference on Robotics and Automation. San Diego, CA:IEEE, 1994. 281-286
    [33] Iwata K, Suzumori K, Wakimoto S. Development of contraction and extension artificial muscles with different braid angles and their application to stiffness changeable bending rubber mechanism by their combination. Journal of Robotics and Mechatronics, 2011, 23(4):582-588 doi: 10.20965/jrm.issn.1883-8049
    [34] Liebenson C. Musculoskeletal myths. Journal of Bodywork and Movement Therapies, 2012, 16(2):165-182 doi: 10.1016/j.jbmt.2011.11.003
    [35] Grew N D, Deane G. The physical effect of lumbar spinal supports. Prosthetics and Orthotics International, 1982, 6(2):79-87 https://www.ncbi.nlm.nih.gov/pubmed/6213930
    [36] Cholewicki J, Reeves N P, Everding V Q, Morrisette D C. Lumbosacral orthoses reduce trunk muscle activity in a postural control task. Journal of Biomechanics, 2007, 40(8):1731-1736 doi: 10.1016/j.jbiomech.2006.08.005
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  3225
  • HTML全文浏览量:  679
  • PDF下载量:  993
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-29
  • 录用日期:  2016-08-15
  • 刊出日期:  2016-12-20

目录

    /

    返回文章
    返回