2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

保证智能轮椅平滑通过狭窄通道的路径曲率优化算法

陈灵 王森 胡豁生 麦当劳-麦尔·克劳斯 费敏锐

陈灵, 王森, 胡豁生, 麦当劳-麦尔·克劳斯, 费敏锐. 保证智能轮椅平滑通过狭窄通道的路径曲率优化算法. 自动化学报, 2016, 42(12): 1874-1885. doi: 10.16383/j.aas.2016.c160185
引用本文: 陈灵, 王森, 胡豁生, 麦当劳-麦尔·克劳斯, 费敏锐. 保证智能轮椅平滑通过狭窄通道的路径曲率优化算法. 自动化学报, 2016, 42(12): 1874-1885. doi: 10.16383/j.aas.2016.c160185
CHEN Ling, WANG Sen, HU Huo-Sheng, MCDONALD-MAIER Klaus, FEI Min-Rui. Novel Path Curvature Optimization Algorithm for Intelligent Wheelchair to Smoothly Pass a Narrow Space. ACTA AUTOMATICA SINICA, 2016, 42(12): 1874-1885. doi: 10.16383/j.aas.2016.c160185
Citation: CHEN Ling, WANG Sen, HU Huo-Sheng, MCDONALD-MAIER Klaus, FEI Min-Rui. Novel Path Curvature Optimization Algorithm for Intelligent Wheelchair to Smoothly Pass a Narrow Space. ACTA AUTOMATICA SINICA, 2016, 42(12): 1874-1885. doi: 10.16383/j.aas.2016.c160185

保证智能轮椅平滑通过狭窄通道的路径曲率优化算法

doi: 10.16383/j.aas.2016.c160185
基金项目: 

上海市科委重点项目 14JC1402200

上海市科委重点项目 15411953502

上海市科委扬帆人才计划项目 16YF1403700

上海高校青年教师培养资助计划 ZZSD15088

详细信息
    作者简介:

    王森 英国牛津大学计算机科学学院助理研究员.主要研究方向为机器人定位和多传感器融合.E-mail:sen.wang@cs.ox.ac.uk

    胡豁生 英国埃塞克斯大学计算机科学与电子系统学院教授, 机器人实验室主任.主要研究方向为自主机器人和网络化机器人.E-mail:hhu@essex.ac.uk

    麦当劳-麦尔·克劳斯 英国埃塞克斯大学计算机科学与电子系统学院教授.主要研究方向为嵌入式系统和机器人应用.E-mail:kdm@essex.ac.uk

    费敏锐  上海大学机电工程与自动化学院教授.主要研究方向为网络化控制系统, 智能机器人系统.E-mail:mrfei@stafi.shu.edu.cn

    通讯作者:

    陈灵 上海大学机电工程与自动化学院助理研究员.主要研究方向为机器人定位与导航.本文通信作者.E-mail:lcheno@shu.edu.cn

Novel Path Curvature Optimization Algorithm for Intelligent Wheelchair to Smoothly Pass a Narrow Space

Funds: 

Key Project of Science and Technology Commission of Shanghai Municipality 14JC1402200

Key Project of Science and Technology Commission of Shanghai Municipality 15411953502

Shanghai Sailing Program 16YF1403700

Shanghai Colleges and Universities Young Teachers Training Funding Scheme ZZSD15088

More Information
    Author Bio:

    Assistant professor in the Department of Computer Science, University of Oxford, Oxford, UK. His research interest covers robot localization and multiple sensor fusion

    Professor at the School of Computer Science and Electronic Engineering, University of Essex, UK, leading robotics research. His research interest covers autonomous robots and networked robots

    Professor at the School of Computer Science and Electronic Engineering, University of Essex, UK. His research interest covers embedded systems and application of robotics

    Professor at the School of Mechatronics Engineering and Automation, Shanghai University. His research interest covers networked control system and intelligent robot system

    Corresponding author: CHEN Ling Assistant professor at the School of Mechatronics Engineering and Automation, Shanghai University. His research interest covers localization and navigation of robots. Corresponding author of this paper
  • 摘要: 为了使用户更感舒适,智能轮椅应该能在具有复杂几何约束的室内环境下平滑地通过狭窄通道.本文提出一个基于路径曲率优化的算法以确保智能轮椅平滑地通过狭窄过道.考虑到路径平滑度取决于路径曲率及其变化率,在通过传感器数据计算出狭窄通道相对于轮椅的位置后,算法以贝塞尔曲线的曲率及其变化率最小为优化目标,以轮椅过通道时的方向及贝塞尔多边形应为凸多边形作为约束,规划出一条平滑的最优路径,然后控制轮椅实时跟踪这条路径.上述过程动态循环运行,实现了智能轮椅平滑通过狭窄通道.仿真中将本文算法同基于A*的路径规划导航算法进行了对比,结果表明本文提出的基于曲率优化的算法可以实现比A*算法路径曲率更小且更加平滑的过狭窄通道过程,并且即使在没有全局地图和定位信息情况下,算法也能控制轮椅平滑地通过狭窄过道.实验中详细阐述了算法的实现过程,实验结果也证实了算法的有效性.
    1)  本文责任编委 程龙
  • 图  1  轮椅在过狭窄门时的情景

    Fig.  1  Scenario of wheelchair in a narrow doorway

    图  2  轮椅过狭窄通道过程原理图

    Fig.  2  The schematic description of the narrow gap passing process

    图  3  轮椅过狭窄通道算法结构图

    Fig.  3  Strategy architecture of narrow gap passing

    图  4  位置误差的计算

    Fig.  4  The calculation of the position error

    图  5  轮椅的参考路径和实际路径

    Fig.  5  Reference path and actual path of wheelchair

    图  6  在场景$A$中每一条路径对应的轮椅的角速度和跟踪误差

    Fig.  6  The angular rate and the tracking errors for each path in Scenario $A$

    图  7  算法比较的仿真环境

    Fig.  7  Simulation environment for algorithm comparison

    图  8  基于本文方法和A*算法的轮椅路径

    Fig.  8  Actual trajectories generated by the proposed method and A* algorithm

    图  9  基于本文方法和A*算法的路径曲率的比较

    Fig.  9  The comparison of trajectory curvature generated by the proposed method and A* algorithm

    图  10  算法每次循环中各模块运行时间及总时间

    Fig.  10  Consuming time of each algorithm module and their total value for each iteration

    图  11  轮椅和激光的配置

    Fig.  11  Configuration of the wheelchair and the lasers

    图  12  实验场景

    Fig.  12  Experimental scenario

    图  13  一次激光扫描数据点及其分段

    Fig.  13  A full scan of laser data points and its expected segmentations

    图  14  两个激光测距仪相对于单个的优势

    Fig.  14  Advantage of two lasers compared with single laser

    图  15  轮椅轨迹

    Fig.  15  Trajectories of the wheelchair

    图  16  轮椅从不同起点到达终点位置时的实际位置

    Fig.  16  Actual wheelchair poses when arriving at the desired pose with different starting poses $A$, $B$, $C$ and $D$

    图  17  轮椅的角速度

    Fig.  17  Angular rate of the wheelchair

    图  18  轮椅从起点$A$和$D$出发过通道轨迹截图((a)~(f)对应于起点$A$, (g)~(l)对应于起点$D$)

    Fig.  18  Snapshots of the wheelchair$'$s trajectories when passing gap, starting from pose $A$ and $D$ ((a)~(f), (g)~(l) are with pose $A$ and $D$, respectively.)

    表  1  每条路径的输入参数

    Table  1  The input parameters for each path

    场景 Ps (m) Pd (m) Pt (m) 1 (Hs, Hd) 2 (Hs, Hd) 3 (Hd, Ht) 4 (Hd, Ht)
    A (0.1, 1.3) (1.6, 1.8) (0.0, 3.5) (-20, 90) (-40, 90) (90, 160) (90, 200)
    B (0.1, 1.3) (1.6, 1.8) (3.4, 3.5) (-10, 90) (10, 90) (90, 20) (90, -20)
    下载: 导出CSV
  • [1] Elbanhawi M, Simic M, Jazar R N. Continuous path smoothing for car-like robots using B-spline curves. Journal of Intelligent and Robotic Systems, 2015, 80(1):23-56 http://www.academia.edu/15534117/Continuous_Path_Smoothing_for_Car-Like_Robots_Using_B-Spline_Curves
    [2] Yoon S, Yoon S E, Lee U, Shim D H. Recursive path planning using reduced states for car-like vehicles on grid maps. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5):2797-2813 doi: 10.1109/TITS.2015.2422991
    [3] Pan Z, Li J Q, Hu K M, Zhu H. Intelligent vehicle path planning based on improved artificial potential field method. Applied Mechanics and Materials, 2014, 742:349-354 https://www.researchgate.net/publication/276868213_Intelligent_Vehicle_Path_Planning_Based_on_Improved_Artificial_Potential_Field_Method
    [4] 张浩杰, 龚建伟, 姜岩, 熊光明, 陈慧岩.基于变维度状态空间的增量启发式路径规划方法研究.自动化学报, 2013, 39(10):1602-1610 doi: 10.3724/SP.J.1004.2013.01602

    Zhang Hao-Jie, Gong Jian-Wei, Jiang Yan, Xiong Guang-Ming, Chen Hui-Yan. Research on incremental heuristic path planner with variable dimensional state space. Acta Automatica Sinica, 2013, 39(10):1602-1610 doi: 10.3724/SP.J.1004.2013.01602
    [5] 祖迪, 韩建达, 谈大龙.加速度空间中基于线性规划的移动机器人路径规划方法.自动化学报, 2007, 33(10):1036-1042 http://www.aas.net.cn/CN/abstract/abstract13407.shtml

    Zu Di, Han Jian-Da, Tan Da-Long. LP-based path planning method in acceleration space for mobile robot. Acta Automatica Sinica, 2007, 33(10):1036-1042 http://www.aas.net.cn/CN/abstract/abstract13407.shtml
    [6] Park J W, Im W S, Kim D Y, Kim J M. Safe driving algorithm of the electric wheelchair with model following control. In:Proceedings of the 16th European Conference on Power Electronics and Applications. Lappeenranta, Finland:IEEE, 2014. 1-10
    [7] Sinyukov D A, Padir T. Adaptive motion control for a differentially driven semi-autonomous wheelchair platform. In:Proceedings of the 2015 International Conference on Advanced Robotics. Istanbul, Turkey:IEEE, 2015. 288-294
    [8] Zhang Z Y, Zhao Z P. A multiple mobile robots path planning algorithm based on a-star and Dijkstra algorithm. International Journal of Smart Home, 2014, 8(3):75-86 doi: 10.14257/ijsh
    [9] Bhadoria A, Singh R K. Optimized angular a star algorithm for global path search based on neighbor node evaluation. International Journal of Intelligent Systems and Applications, 2014, 6(8):46-52 doi: 10.5815/ijisa
    [10] Seder M, Mostarac P, Petrović I. Hierarchical path planning of mobile robots in complex indoor environments. Transactions of the Institute of Measurement and Control, 2011, 33(3-4):332-358 doi: 10.1177/0142331208100107
    [11] BSI. Design of Buildings and Their Approaches to Meet the Needs of Disabled People. Code of Practice. Standard Number BS 8300:2009+A1:2010, ISBN 9780580707308, British Standards Institute, 2009.
    [12] Cheein F, De La Cruz C, Guimaraes E, Bastos-Filho T, Carelli R. Navigation system for UFES's robotic wheelchair. Devices for Mobility and Manipulation for People with Reduced Abilities. Boca Raton, FL:CRC Press, 2014. 41-93
    [13] Peula J M, Urdiales C, Herrero I, Fernandez-Carmona M, Sandoval F. Case-based reasoning emulation of persons for wheelchair navigation. Artificial Intelligence in Medicine, 2012, 56(2):109-121 doi: 10.1016/j.artmed.2012.08.007
    [14] Rastelli J R, Lattarulo R, Nashashibi F. Dynamic trajectory generation using continuous-curvature algorithms for door to door assistance vehicles. In:Proceedings of the 2014 IEEE Intelligent Vehicles Symposium. Dearborn, USA:IEEE, 2014. 510-515
    [15] Brezak M, Petrović I. Real-time approximation of clothoids with bounded error for path planning applications. IEEE Transactions on Robotics, 2014, 30(2):507-515 doi: 10.1109/TRO.2013.2283928
    [16] Chu C H, Hsieh H T, Lee C H, Yan C Y. Spline-constrained tool-path planning in five-axis flank machining of ruled surfaces. The International Journal of Advanced Manufacturing Technology, 2015, 80(9-12):2097-2104 doi: 10.1007/s00170-015-7201-4
    [17] Simba K R, Uchiyama N, Sano S. Real-time smooth trajectory generation for nonholonomic mobile robots using Bézier curves. Robotics and Computer-Integrated Manufacturing, 2016, 41(1):31-42 https://www.researchgate.net/publication/297587735_Real-time_smooth_trajectory_generation_for_nonholonomic_mobile_robots_using_Bezier_curves
    [18] Yang L, Song D L, Xiao J Z, Han J D, Yang L Y, Cao Y. Generation of dynamically feasible and collision free trajectory by applying six-order Bezier curve and local optimal reshaping. In:Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany:IEEE, 2015. 643-648
    [19] Wu J, Snášel V. A Bézier curve-based approach for path planning in robot soccer. In:Proceedings of the 4th International Conference on Innovations in Bio-inspired Computing and Applications. Ostrava, Czech Republic:Springer International Publishing, 2014. 105-113
    [20] 陈成, 何玉庆, 卜春光, 韩建达.基于四阶贝塞尔曲线的无人车可行轨迹规划.自动化学报, 2015, 41(3):486-496 http://www.aas.net.cn/CN/abstract/abstract18627.shtml

    Chen Cheng, He Yu-Qing, Bu Chun-Guang, Han Jian-Da. Feasible trajectory generation for autonomous vehicles based on quartic Bézier curve. Acta Automatica Sinica, 2015, 41(3):486-496 http://www.aas.net.cn/CN/abstract/abstract18627.shtml
    [21] Choi J W, Curry R, Elkaim G. Piecewise Bezier curves path planning with continuous curvature constraint for autonomous driving. Machine Learning and Systems Engineering. Netherlands:Springer, 2010. 31-45
    [22] Hart P E, Nilsson N J, Raphael B. A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2):100-107 doi: 10.1109/TSSC.1968.300136
    [23] Open Source Robotics Foundation (OSRF). Robot operating system[Online], available:http://www.ros.org, May 21, 2016
    [24] Open Source Robotics Foundation (OSRF). Gazebo[Online], available:http://www.gazebosim.org/, May 21, 2016
    [25] Open Source Robotics Foundation (OSRF). Global planner of navigation stack in ROS[Online], available:http://wiki.ros.org/global_planner?distro=indigo, May 21, 2016
    [26] Borges G A, Aldon M J. Line extraction in 2D range images for mobile robotics. Journal of Intelligent and Robotic Systems, 2004, 40(3):267-297 doi: 10.1023/B:JINT.0000038945.55712.65
    [27] Duda R O, Hart P E. Pattern Classification and Scene Analysis. New York:Wiley, 1973.
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  2214
  • HTML全文浏览量:  336
  • PDF下载量:  600
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-01
  • 录用日期:  2016-07-11
  • 刊出日期:  2016-12-01

目录

    /

    返回文章
    返回