-
摘要: 针对助行机器人的柔顺性和安全性问题,基于多传感器系统融合技术,本文提出了一种能够兼具柔顺与安全的助行机器人运动控制方法.首先介绍了助行机器人的机械结构、控制原理以及多传感器系统,然后根据机器人多传感器系统,设计出各传感器相对应的用户意图估计方法,提出了一种基于多传感器融合的助行机器人柔顺运动控制算法.分析用户可能发生的跌倒模式,使用基于卡尔曼滤波(Kalman filter,KF)的序贯概率比检验(Sequential probability ratio test,SPRT)方法和决策函数来判断用户是否会跌倒,并判断处于哪种跌倒模式.最后,通过助行机器人柔顺运动控制实验和用户跌倒检测实验验证了算法的有效性.Abstract: Aimed at compliance and safety problems in motion control of walking-aid robot, a multi-sensor fusion based walking-aid robot motion control method with both compliance and safety is proposed. Firstly, the mechanism, control theory and multi-sensor system of the walking-aid robot are introduced. Then according to multi-sensor system, user motion intention estimation methods for each sensor are designed and a multi-sensor based compliance motion control for walking-aid robot is proposed. After analyzing user's possible falling modes, a Kalman filter (KF) based sequential probability ratio test (SPRT) method and decision function are used to detect the fall and falling mode. Finally, several compliance motion control experiments and fall detection experiments are described to show validity of the proposed algorithm.
-
Key words:
- Walking-aid robot /
- fall detection /
- force sensor /
- laser range finder /
- compliance
-
-
表 1 3个志愿者在不同跌倒模式下的平均意图速度(cm/s)
Table 1 The intent velocities of three subjects in different falling modes (cm/s)
$\overline{{}{^h}{\dot{X}}_{H}}$ $\overline{{}{^h}{\dot{Y}}_{H}}$ $\overline{{}{^h}{\dot{Z}}_{H}}$ $\overline{{}{^h}{\dot{X}}_{L}}$ $\overline{{}{^h}{\dot{Y}}_{L}}$ A 向前 16 -0.031 0 -11.22 -2.40 向左 0 16 0 0.27 -7.82 向右 0 -16 0 -3.97 6.10 B 向前 16 0.051 0 -11.87 -2.09 向左 0.02 16 0 0.60 -5.83 向右 0 -16 0 -2.02 6.70 C 向前 16 -0.025 0 -13.95 -4.14 向左 0 16 0 -1.27 -8.32 向右 0 -16 0 -2.65 6.13 -
[1] 胡进, 侯增广, 陈翼雄, 张峰, 王卫群.下肢康复机器人及其交互控制方法.自动化学报, 2014, 40(11):2377-2390 http://www.aas.net.cn/CN/abstract/abstract18514.shtmlHu Jin, Hou Zeng-Guang, Chen Yi-Xiong, Zhang Feng, Wang Wei-Qun. Lower limb rehabilitation robots and interactive control methods. Acta Automatica Sinica, 2014, 40(11):2377-2390 http://www.aas.net.cn/CN/abstract/abstract18514.shtml [2] 彭亮, 侯增广, 王卫群.康复机器人的同步主动交互控制与实现.自动化学报, 2015, 41(11):1837-1846 http://www.aas.net.cn/CN/abstract/abstract18759.shtmlPeng Liang, Hou Zeng-Guang, Wang Wei-Qun. Synchronous active interaction control and its implementation for a rehabilitation robot. Acta Automatica Sinica, 2015, 41(11):1837-1846 http://www.aas.net.cn/CN/abstract/abstract18759.shtml [3] 谭民, 王硕.机器人技术研究进展.自动化学报, 2013, 39(7):963-972 http://www.aas.net.cn/CN/abstract/abstract18124.shtmlTan Min, Wang Shuo. Research progress on robotics. Acta Automatica Sinica, 2013, 39(7):963-972 http://www.aas.net.cn/CN/abstract/abstract18124.shtml [4] Whitney D E. Resolved motion rate control of manipulators and human prostheses. IEEE Transactions on Man-Machine Systems, 1969, 10(2):47-53 doi: 10.1109/TMMS.1969.299896 [5] 殷跃红, 尉忠信, 朱剑英.机器人柔顺控制研究.机器人, 1998, 20(3):232-240 http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR803.011.htmYin Yue-Hong, Wei Zhong-Xin, Zhu Jian-Ying. Compliance control of robot an overview. Robot, 1998, 20(3):232-240 http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR803.011.htm [6] Shibata T, Murakami T. Power-assist control of pushing task by repulsive compliance control in electric wheelchair. IEEE Transactions on Industrial Electronics, 2012, 59(1):511-520 doi: 10.1109/TIE.2011.2146210 [7] Katsura S, Ohnishi K. Human cooperative wheelchair for haptic interaction based on dual compliance control. IEEE Transactions on Industrial Electronics, 2004, 51(1):221-228 doi: 10.1109/TIE.2003.821890 [8] Xu W X, Huang J, Wang Y J, Tao C J, Cheng L. Reinforcement learning-based shared control for walking-aid robot and its experimental verification. Advanced Robotics, 2015, 29(22):1463-1481 doi: 10.1080/01691864.2015.1070748 [9] Wannier T, Bastiaanse C, Colombo G, Dietz V. Arm to leg coordination in humans during walking, creeping and swimming activities. Experimental Brain Research, 2001, 141(3):375-379 doi: 10.1007/s002210100875 [10] Stephenson J L, Lamontagne A, De Serres S J. The coordination of upper and lower limb movements during gait in healthy and stroke individuals. Gait and Posture, 2009, 29(1):11-16 doi: 10.1016/j.gaitpost.2008.05.013 [11] Suzuki S, Hirata Y, Kosuge K, Onodera H. Walking support based on cooperation between wearable-type and cane-type walking support systems. In:Proceedings of the 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Budapest, Hungary:IEEE, 2011. 122-127 [12] Huang J, Huo W G, Xu W X, Mohammed S, Amirat Y. Control of upper-limb power-assist exoskeleton using a human-robot interface based on motion intention recognition. IEEE Transactions on Automation Science and Engineering, 2015, 12(4):1257-1270 doi: 10.1109/TASE.2015.2466634 [13] Huang J, Tu X K, He J P. Design and evaluation of the RUPERT wearable upper extremity exoskeleton robot for clinical and in-home therapies. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2016, 46(7):926-935 doi: 10.1109/TSMC.2015.2497205 [14] Wu J, Huang J, Wang Y J, Xing K X. Nonlinear disturbance observer-based dynamic surface control for trajectory tracking of pneumatic muscle system. IEEE Transactions on Control Systems Technology, 2014, 22(2):440-455 doi: 10.1109/TCST.2013.2262074 [15] Mirmahboub B, Samavi S, Karimi N, Shirani S. Automatic monocular system for human fall detection based on variations in silhouette area. IEEE Transactions on Biomedical Engineering, 2013, 60(2):427-436 doi: 10.1109/TBME.2012.2228262 [16] Litvak D, Zigel Y, Gannot I. Fall detection of elderly through floor vibrations and sound. In:Proceedings of the 30th Annual International Conference on Engineering in Medicine and Biology Society. Vancouver, British Columbia, Canada:IEEE, 2008. 4632-4635 [17] Cheng W C, Jhan D M. Triaxial accelerometer-based fall detection method using a self-constructing cascade-AdaBoost-SVM classifier. IEEE Journal of Biomedical and Health Informatics, 2013, 17(2):411-419 doi: 10.1109/JBHI.2012.2237034 [18] Karantonis D M, Narayanan M R, Mathie M, Lovell N H, Celler B G. Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Transactions on Information Technology in Biomedicine, 2006, 10(1):156-167 doi: 10.1109/TITB.2005.856864 [19] Wu G. Distinguishing fall activities from normal activities by velocity characteristics. Journal of Biomechanics, 2000, 33(11):1497-1500 doi: 10.1016/S0021-9290(00)00117-2 [20] Williams G, Doughty K, Cameron K, Bradley D A. A smart fall and activity monitor for telecare applications. In:Proceedings of the 20th Annual International Conference on Engineering in Medicine and Biology Society. Hong Kong, China:IEEE, 1998. 1151-1154 [21] Degen T, Jaeckel H, Rufer M, Wyss S. SPEEDY:a fall detector in a wrist watch. In:Proceedings of the 7th IEEE International Symposium on Wearable Computers. White Plains, New York, USA:IEEE, 2003. 184-189 [22] Hirata Y, Muraki A, Kosuge K. Motion control of intelligent walker based on renew of estimation parameters for user state. In:Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China:IEEE, 2006. 1050-1055 [23] Hirata Y, Komatsuda S, Kosuge K. Fall prevention control of passive intelligent walker based on human model. In:Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice, France:IEEE, 2008. 1222-1228 [24] Huang J, Di P, Wakita K, Fukuda T, Sekiyama K. Study of fall detection using intelligent cane based on sensor fusion. In:Proceedings of the 2008 International Symposium on Micro-NanoMechatronics and Human Science. Nagoya, Japan:IEEE, 2008. 495-500 [25] Huang J, Xu W X, Mohammed S, Shu Z. Posture estimation and human support using wearable sensors and walking-aid robot. Robotics and Autonomous Systems, 2015, 73:24-43 doi: 10.1016/j.robot.2014.11.013 [26] Han R, Tao C J, Huang J, Wang Y J, Yan H P, Ma L F. Design and control of an intelligent walking-aid robot. In:Proceedings of the 6th International Conference on Modelling, Identification, and Control. Melbourne, VIC:IEEE, 2014. 53-58 [27] Li P, Kadirkamanathan V. Fault detection and isolation in non-linear stochastic systems-a combined adaptive Monte Carlo filtering and likelihood ratio approach. International Journal of Control, 2004, 77(12):1101-1114 doi: 10.1080/00207170412331293311 [28] Jebson P J L, Hayden R J. AO principles of fracture management. The Journal of the American Medical Association, 2008, 300(20):2432-2433 doi: 10.1001/jama.2008.703 [29] Lefebvre T, Xiao J, Bruyninckx H, De Gersem G. Active compliant motion:a survey. Advanced Robotics, 2005, 19(5):479-499 doi: 10.1163/156855305323383767 [30] Marsland S. Machine Learning:An Algorithmic Perspective. Boca Raton, FL, USA:Chapman and Hall/CRC, 2009. 356-359 [31] Kadirkamanathan V, Li P, Jaward M H, Fabri S G. Particle filtering-based fault detection in non-linear stochastic systems. International Journal of Systems Science, 2002, 33(4):259-265 doi: 10.1080/00207720110102566 期刊类型引用(39)
1. 杨涛. 基于机器学习的语音增强技术. 电声技术. 2024(03): 39-41 . 百度学术
2. 杨波. 基于卷积神经网络的实时语音分割优化研究. 电声技术. 2024(05): 46-48 . 百度学术
3. 张文安,林安迪,杨旭升,俞立,杨小牛. 融合深度学习的贝叶斯滤波综述. 自动化学报. 2024(08): 1502-1516 . 本站查看
4. 郑盼盼,闫东. 基于深度卷积神经网络的城市噪声识别研究. 电声技术. 2024(09): 41-43 . 百度学术
5. 胡翔,杨洋,蒋长江,潘自强,匡仲琴. 一种基于深度神经网络的电力系统调度控制语音识别模型. 电子器件. 2023(01): 90-95 . 百度学术
6. 高建清,屠彦辉,马峰,付中华. 基于渐进比率掩蔽目标的自适应噪声估计方法. 计算机应用. 2023(04): 1303-1308 . 百度学术
7. 李鑫元,黄鹤鸣. 基于并行卷积循环网络的单通道语音增强系统. 计算机工程与设计. 2023(04): 1181-1188 . 百度学术
8. 沈学利,田桂源,姜彦吉,马琳琳. 基于双阶段Conv-Transformer的时频域语音增强算法. 计算机工程. 2023(06): 123-130 . 百度学术
9. 陈晋音,吴长安,郑海斌,王巍,温浩. 基于通用逆扰动的对抗攻击防御方法. 自动化学报. 2023(10): 2172-2187 . 本站查看
10. 李辉,景浩,严康华,徐良浩. 基于卷积循环网络与非局部模块的语音增强方法. 电子科技. 2022(03): 8-15 . 百度学术
11. 徐秋平,任玲,樊玺炫,王义华. 语音识别技术在轨道交通AFC系统中的应用研究. 现代城市轨道交通. 2022(04): 31-35 . 百度学术
12. 许春冬,徐琅,周滨. 结合优化U-Net和残差神经网络的单通道语音增强算法. 现代电子技术. 2022(09): 35-40 . 百度学术
13. 李文志,屈晓旭. 基于注意力机制和残差卷积网络的语音增强. 舰船电子工程. 2022(05): 96-100 . 百度学术
14. 李辉,景浩,严康华,邹波蓉,侯庆华,武会斌. 基于双通道卷积注意力网络的语音增强方法. 河南理工大学学报(自然科学版). 2022(05): 127-136 . 百度学术
15. 李江和,王玫. 一种用于因果式语音增强的门控循环神经网络. 计算机工程. 2022(11): 77-82 . 百度学术
16. 陈晋音,沈诗婧,苏蒙蒙,郑海斌,熊晖. 车牌识别系统的黑盒对抗攻击. 自动化学报. 2021(01): 121-135 . 本站查看
17. SHI Wenhua,ZHANG Xiongwei,ZOU Xia,SUN Meng,LI Li,REN Zhengbing. Time-frequency mask estimation-based speech enhancement using deep encoder-decoder neural network. Chinese Journal of Acoustics. 2021(01): 141-154 . 必应学术
18. 董宏越,马建芬,张朝霞. 基于时域波形映射-频域谐波损失的语音增强. 计算机工程与设计. 2021(06): 1677-1683 . 百度学术
19. 唐艳凤,林俊强,马振丰. 基于Cauchy模型的行人轮廓提取及目标检测. 计算机测量与控制. 2021(07): 41-45 . 百度学术
20. 王钇翔,吕忆蓝,台文鑫,孙建强,蓝天. 基于区域自适应多尺度卷积的单声道语音增强算法. 计算机应用研究. 2021(11): 3264-3267 . 百度学术
21. 储有亮,李梁. 基于DBLSTM-DCNN的骨导和气导语音转换. 声学技术. 2021(06): 815-821 . 百度学术
22. 连海伦,周健,胡雨婷,郑文明. 利用深度卷积神经网络将耳语转换为正常语音. 声学学报. 2020(01): 137-144 . 百度学术
23. 娄迎曦,袁文浩,彭荣群. 基于准循环神经网络的语音增强方法. 计算机工程. 2020(04): 316-320 . 百度学术
24. 时文华,张雄伟,邹霞,孙蒙,李莉. 联合深度编解码网络和时频掩蔽估计的单通道语音增强. 声学学报. 2020(03): 299-307 . 百度学术
25. 刘晓宇,武鲁,许少华. 一种深层过程神经网络及其在信号分类中的应用. 软件导刊. 2020(03): 60-64 . 百度学术
26. 董兴磊,胡英,黄浩,吾守尔·斯拉木. 基于卷积非负矩阵部分联合分解的强噪声单声道语音分离. 自动化学报. 2020(06): 1200-1209 . 本站查看
27. 刘虹,袁三男. 基于多尺度残差深度卷积神经网络的语音识别. 计算机应用与软件. 2020(11): 275-279 . 百度学术
28. 许春冬,徐琅,周滨,凌贤鹏. 单通道语音增强技术的研究现状与发展趋势. 江西理工大学学报. 2020(05): 55-64 . 百度学术
29. 袁文浩,娄迎曦,夏斌,孙文珠. 基于卷积门控循环神经网络的语音增强方法. 华中科技大学学报(自然科学版). 2019(04): 13-18 . 百度学术
30. 袁文浩,娄迎曦,梁春燕,王志强. 感知联合优化的深度神经网络语音增强方法. 西安电子科技大学学报. 2019(02): 89-94 . 百度学术
31. 姚红革,沈新霞,李宇,喻钧,雷松泽. 多模态融合的深度学习脑肿瘤检测方法. 光子学报. 2019(07): 165-176 . 百度学术
32. 袁文浩,梁春燕,夏斌. 基于深度神经网络的因果形式语音增强模型. 计算机工程. 2019(08): 255-259 . 百度学术
33. 韦博轩,张冀聪. EEG及MEG痫样棘波检测算法研究现状. 中国医疗设备. 2019(11): 30-33 . 百度学术
34. 黄志东. 鲁棒性语音识别技术研究综述. 信息通信. 2019(11): 20-22 . 百度学术
35. 陈郑平,米为民,林静怀,王恒,王昊,董根源. 电网调控操作智能助手方案探讨. 电力系统自动化. 2019(22): 173-179+186 . 百度学术
36. 任晓霞. 基于Dropout深度卷积神经网络的ST段波形分类算法. 传感技术学报. 2018(08): 1217-1222 . 百度学术
37. 刘亚,王静,田新诚. 基于C#和Matlab混合编程的轴承故障诊断系统. 计算机应用. 2018(S2): 236-238+242 . 百度学术
38. 罗秀芝,马本学,李小霞,胡洋洋,王文霞,雷声渊. 基于卷积神经网络干制哈密大枣纹理分级. 新疆农业科学. 2018(12): 2220-2227 . 百度学术
39. 吴耀春,赵荣珍,靳伍银,何天经,武杰. 利用DCNN融合多传感器特征的故障诊断方法. 振动.测试与诊断. 2021(02): 362-369+416 . 百度学术
其他类型引用(39)
-