2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多类运动想象脑电信号的两级特征提取方法

孟明 朱俊青 佘青山 马玉良 罗志增

孟明, 朱俊青, 佘青山, 马玉良, 罗志增. 多类运动想象脑电信号的两级特征提取方法. 自动化学报, 2016, 42(12): 1915-1922. doi: 10.16383/j.aas.2016.c160122
引用本文: 孟明, 朱俊青, 佘青山, 马玉良, 罗志增. 多类运动想象脑电信号的两级特征提取方法. 自动化学报, 2016, 42(12): 1915-1922. doi: 10.16383/j.aas.2016.c160122
MENG Ming, ZHU Jun-Qing, SHE Qing-Shan, MA Yu-Liang, LUO Zhi-Zeng. Two-level Feature Extraction Method for Multi-class Motor Imagery EEG. ACTA AUTOMATICA SINICA, 2016, 42(12): 1915-1922. doi: 10.16383/j.aas.2016.c160122
Citation: MENG Ming, ZHU Jun-Qing, SHE Qing-Shan, MA Yu-Liang, LUO Zhi-Zeng. Two-level Feature Extraction Method for Multi-class Motor Imagery EEG. ACTA AUTOMATICA SINICA, 2016, 42(12): 1915-1922. doi: 10.16383/j.aas.2016.c160122

多类运动想象脑电信号的两级特征提取方法

doi: 10.16383/j.aas.2016.c160122
基金项目: 

浙江省自然科学基金 LY15F010009

国家自然科学基金 61372023

国家自然科学基金 61671197

浙江省自然科学基金 LY14F030023

详细信息
    作者简介:

    孟明  杭州电子科技大学副教授.主要研究方向为机器人智能控制, 生物医学信息处理和脑机接口.E-mail:mnming@hdu.edu.cn

    朱俊青 杭州电子科技大学自动化学院硕士研究生.主要研究方向为模式识别, 脑机接口及相关应用.E-mail:141060042@hdu.edu.cn

    佘青山  杭州电子科技大学副教授.主要研究方向为模式识别, 生物医学信号处理, 脑机接口及相关应用.E-mail:qsshe@hdu.edu.cn

    马玉良 杭州电子科技大学副教授.主要研究方向为模式识别, 脑机接口技术和机器人智能控制.E-mail:mayuliang@hdu.edu.cn

    通讯作者:

    罗志增 杭州电子科技大学教授.主要研究方向为模式识别与智能系统, 康复机器人, 生物信息检测与处理.本文通信作者.E-mail:luo@hdu.edu.cn

Two-level Feature Extraction Method for Multi-class Motor Imagery EEG

Funds: 

Natural Science Foundation of Zhejiang Province LY15F010009

National Natural Science Foundation of China 61372023

National Natural Science Foundation of China 61671197

Natural Science Foundation of Zhejiang Province LY14F030023

More Information
    Author Bio:

    Associate professor at Hangzhou Dianzi University. His research interest covers intelligent control of robot, biomedical information processing and brain-computer interface

     Master student at the School of Automation, Hangzhou Dianzi University. His research interest covers pattern recognition and braincomputer interface and its applications

    Associate professor at Hangzhou Dianzi University. His research interest covers pattern recognition, biomedical signal processing, and brain-computer interface and its applications

    Associate professor at Hangzhou Dianzi University. His research interest covers pattern recognition, brain-computer interface, and intelligent control of robot

    Corresponding author: LUO Zhi-Zeng Professor at Hangzhou Dianzi University. His research interest covers pattern recognition and intelligent systems, rehabilitation robot, and detection and processing of biological information. Corresponding author of this paper
  • 摘要: 共同空间模式(Common spatial pattern,CSP)是运动想象脑机接口(Brain-computer interface,BCI)中常用的特征提取方法,但对多类任务的分类正确率却明显低于两类任务.通过引入堆叠降噪自动编码器(Stacked denoising autoencoders,SDA),提出了一种多类运动想象脑电信号(Electroencephalogram,EEG)的两级特征提取方法.首先利用一对多CSP(One versus rest CSP,OVR-CSP)将脑电信号变换到使信号方差区别最大的低维空间,然后通过SDA网络提取其中可以更好表达类别属性的高层抽象特征,最后使用Softmax分类器进行分类.在对BCI竞赛IV中Data-sets 2a的4类运动想象任务进行的分类实验中,平均Kappa系数达到0.69,表明了所提出的特征提取方法的有效性和鲁棒性.
    1)  本文责任编委 程龙
  • 图  1  自动编码器结构

    Fig.  1  The autoencoder architecture

    图  2  降噪自动编码器加噪重构过程

    Fig.  2  The procedure of corrupting and reconstruction of DAE

    图  3  堆叠降噪自动编码器结构

    Fig.  3  The SDA architecture

    图  4  实验范式时序图[18]

    Fig.  4  Timing scheme of the paradigm[18]

    图  5  取不同m值时的分类准确率

    Fig.  5  Classification accuracies with various value of m

    图  6  三种方法的分类性能比较

    Fig.  6  Comparison of classification performance of three methods

    表  1  均Kappa系数随隐含层层数的变化

    Table  1  Mean Kappa coefficient variation with the number of hidden layers

    层数2468
    Kappa 0.61 0.68 0.62 0.59
    下载: 导出CSV

    表  2  平均Kappa系数随隐含层单元数组合的变化

    Table  2  Mean Kappa coefficient variation with the combination of the number of units in the hidden layer

    组合24-24-24-2424-20-16-824-28-32-40
    Kappa 0.680 0.691 0.689
    下载: 导出CSV

    表  3  本文方法与BCI竞赛前三名以及其他文献方法的Kappa系数比较

    Table  3  Comparison of Kappa coefficient obtained from proposed method, first three teams of the competition and other reference method

    受试者
    A01 A02 A03 A04 A05 A06 A07 A08 A09 总体均值
    第1名 0.68 0.42 0.75 0.48 0.4 0.27 0.77 0.75 0.61 0.57±0.183
    第2名 0.69 0.34 0.71 0.44 0.16 0.21 0.66 0.73 0.69 0.52±0.230
    第3名 0.38 0.18 0.48 0.33 0.07 0.14 0.29 0.49 0.44 0.31±0.153
    文献[22] 0.73 0.46 0.76 0.48 0.21 0.33 0.76 0.75 0.81 0.59±0.221
    本文 0.82
    ±0.104
    0.49
    ±0.084
    0.68
    ±0.109
    0.65
    ±0.126
    0.54
    ±0.118
    0.51
    ±0.134
    0.86
    ±0.105
    0.81
    ±0.089
    0.81
    ±0.096
    0.69
    ±0.146
    下载: 导出CSV
  • [1] 王行愚, 金晶, 张宇, 王蓓.脑控:基于脑-机接口的人机融合控制.自动化学报, 2013, 39(3):208-221 doi: 10.1016/S1874-1029(13)60023-3

    Wang Xing-Yu, Jin Jing, Zhang Yu, Wang Bei. Brain control:human-computer integration control based on brain-computer interface. Acta Automatica Sinica, 2013, 39(3):208-221 doi: 10.1016/S1874-1029(13)60023-3
    [2] Nicolas-Alanso L F, Corralejo R, Gomez-Pilar J, álvarez D, Hornero R. Adaptive stacked generalization for multiclass motor imagery-based brain computer interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23(4):702-712 doi: 10.1109/TNSRE.2015.2398573
    [3] Aghaei A S, Mahanta M S, Plataniotis K N. Separable common spatio-spectral patterns for motor imagery BCI systems. IEEE Transactions on Biomedical Engineering, 2016, 63(1):15-29 doi: 10.1109/TBME.2015.2487738
    [4] 李明爱, 刘净瑜, 郝冬梅.基于改进CSP算法的运动想象脑电信号识别方法.中国生物医学工程学报, 2009, 28(2):161-165 http://www.cnki.com.cn/Article/CJFDTOTAL-ZSWY200902001.htm

    Li Ming-Ai, Liu Jing-Yu, Hao Dong-Mei. EEG recognition of motor imagery based on improved CSP algorithm. Chinese Journal of Biomedical Engineering, 2009, 28(2):161-165 http://www.cnki.com.cn/Article/CJFDTOTAL-ZSWY200902001.htm
    [5] Zhang H H, Chin Z Y, Ang K K, Guan C T, Wang C C. Optimum spatio-spectral filtering network for brain-computer interface. IEEE Transactions on Neural Networks, 2011, 22(1):52-63 doi: 10.1109/TNN.2010.2084099
    [6] Wu W, Gao X R, Gao S K. One-versus-the-rest (OVR) algorithm:an extension of common spatial patterns (CSP) algorithm to multi-class case. In:Proceedings of the 2005 IEEE Engineering in Medicine and the 27th Biology Annual Conference. Shanghai, China:IEEE, 2006. 2387-2390
    [7] 刘广权, 黄淦, 朱向阳.共空域模式方法在多类别分类中的应用.中国生物医学工程学报, 2009, 28(6):935-938 http://www.cnki.com.cn/Article/CJFDTOTAL-ZSWY200906025.htm

    Liu Guang-Quan, Huang Gan, Zhu Xiang-Yang. Application of CSP method in multi-class classification. Chinese Journal of Biomedical Engineering, 2009, 28(6):935-938 http://www.cnki.com.cn/Article/CJFDTOTAL-ZSWY200906025.htm
    [8] Zhang Y, Zhou G X, Jin J, Wang X Y, Cichocki A. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface. Journal of Neuroscience Methods, 2015, 255:85-91 doi: 10.1016/j.jneumeth.2015.08.004
    [9] Ang K K, Chin Z Y, Wang C C, Guan C T, Zhang H H. Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Frontiers in Neuroscience, 2012, 6:39
    [10] Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P A. Stacked denoising autoencoders:learning useful representations in a deep network with a local denoising criterion. The Journal of Machine Learning Research, 2010, 11:3371-3408 http://www.docin.com/p-904440224.html
    [11] Li J H, Struzik Z, Zhang L Q, Cichocki A. Feature learning from incomplete EEG with denoising autoencoder. Neurocomputing, 2015, 165:23-31 doi: 10.1016/j.neucom.2014.08.092
    [12] 耿杰, 范剑超, 初佳兰, 王洪玉.基于深度协同稀疏编码网络的海洋浮筏SAR图像目标识别.自动化学报, 2016, 42(4):593-604 http://www.aas.net.cn/CN/abstract/abstract18846.shtml

    Geng Jie, Fan Jian-Chao, Chu Jia-Lan, Wang Hong-Yu. Research on marine floating raft aquaculture SAR image target recognition based on deep collaborative sparse coding network. Acta Automatica Sinica, 2016, 42(4):593-604 http://www.aas.net.cn/CN/abstract/abstract18846.shtml
    [13] 徐守晶, 韩立新, 曾晓勤.基于改进型SDA的自然图像分类与检索.模式识别与人工智能, 2014, 27(8):750-757 http://www.cnki.com.cn/Article/CJFDTOTAL-MSSB201408010.htm

    Xu Shou-Jing, Han Li-Xin, Zeng Xiao-Qin. Natural images classification and retrieval based on improved SDA. Pattern Recognition and Artificial Intelligence, 2014, 27(8):750-757 http://www.cnki.com.cn/Article/CJFDTOTAL-MSSB201408010.htm
    [14] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors. Nature, 1986, 323(6088):533-536 doi: 10.1038/323533a0
    [15] Vincent P, Larochelle H, Bengio Y, Manzagol P A. Extracting and composing robust features with denoising autoencoders. In:Proceedings of the 25th International Conference on Machine Learning. Helsinki, Finland:ACM, 2008. 1096-1103
    [16] Erhan D, Bengio Y, Courville A, Manzagol P A, Vincent P, Bengio Y. Why does unsupervised pre-training help deep learning? The Journal of Machine Learning Research, 2010, 11:625-660 http://www.stat.cmu.edu/~ryantibs/journalclub/deep.pdf
    [17] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18(7):1527-1554 doi: 10.1162/neco.2006.18.7.1527
    [18] Tangermann M, Müller K R, Aertsen A, Birbaumer N, Braun C, Brunner C, Leeb R, Mehring C, Miller K J, Müller-Putz G R, Nolte G, Pfurtscheller G, Preissl H, Schalk G, Schlġl A, Vidaurre C, Waldert S, Blankertz B. Review of the BCI competition IV. Frontiers in Neuroscience, 2012, 6:55 https://www.researchgate.net/publication/229077218_Review_of_the_BCI_competition_IV
    [19] Ramoser H, Muller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Transactions on Rehabilitation Engineering, 2000, 8(4):441-446 doi: 10.1109/86.895946
    [20] Wang H X, Xu D. Comprehensive common spatial patterns with temporal structure information of EEG data:minimizing nontask related EEG component. IEEE Transactions on Biomedical Engineering, 2012, 59(9):2496-2505 doi: 10.1109/TBME.2012.2205383
    [21] Berlin Brain-Computer Interface. BCI competition IV-final results[Online], available:http://www.bbci.de, January 1, 2016
    [22] 刘冲, 颜世玉, 赵海滨, 王宏.多类运动想象任务脑电信号的KNN分类研究.仪器仪表学报, 2013, 33(8):1714-1720 http://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201208006.htm

    Liu Chong, Yan Shi-Yu, Zhao Hai-Bin, Wang Hong. Study on multi-class motor imagery EEG classification based on KNN. Chinese Journal of Scientific Instrument, 2013, 33(8):1714-1720 http://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201208006.htm
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  2986
  • HTML全文浏览量:  474
  • PDF下载量:  1383
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-03
  • 录用日期:  2016-06-14
  • 刊出日期:  2016-12-01

目录

    /

    返回文章
    返回