2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于集员滤波的双Kinect人体关节点数据融合

杜惠斌 赵忆文 韩建达 赵新刚 王争 宋国立

杜惠斌, 赵忆文, 韩建达, 赵新刚, 王争, 宋国立. 基于集员滤波的双Kinect人体关节点数据融合. 自动化学报, 2016, 42(12): 1886-1898. doi: 10.16383/j.aas.2016.c160109
引用本文: 杜惠斌, 赵忆文, 韩建达, 赵新刚, 王争, 宋国立. 基于集员滤波的双Kinect人体关节点数据融合. 自动化学报, 2016, 42(12): 1886-1898. doi: 10.16383/j.aas.2016.c160109
DU Hui-Bin, ZHAO Yi-Wen, HAN Jian-Da, ZHAO Xin-Gang, WANG Zheng, SONG Guo-Li. Data Fusion of Human Skeleton Joint Tracking Using Two Kinect Sensors and Extended Set Membership Filter. ACTA AUTOMATICA SINICA, 2016, 42(12): 1886-1898. doi: 10.16383/j.aas.2016.c160109
Citation: DU Hui-Bin, ZHAO Yi-Wen, HAN Jian-Da, ZHAO Xin-Gang, WANG Zheng, SONG Guo-Li. Data Fusion of Human Skeleton Joint Tracking Using Two Kinect Sensors and Extended Set Membership Filter. ACTA AUTOMATICA SINICA, 2016, 42(12): 1886-1898. doi: 10.16383/j.aas.2016.c160109

基于集员滤波的双Kinect人体关节点数据融合

doi: 10.16383/j.aas.2016.c160109
基金项目: 

中科院机器人与智能制造自主部署课题 C2016001

国家自然科学基金 U1508208

详细信息
    作者简介:

    杜惠斌 中国科学院沈阳自动化研究所博士研究生.2012年获得重庆大学机械设计及其自动化学士学位.主要研究方向为协作型机械臂运动规划与控制.E-mail:duhuibin@sia.cn

    赵忆文 中国科学院自动化研究所研究员.1995、1997年分别获得哈尔滨工业大学学士学位、硕士学位; 2000年获得中国科学院沈阳自动化研究所博士学位.主要研究方向为特种机器人, 医疗机器人, 智能机器人控制.E-mail:zhaoyw@sia.cn

    赵新刚 中国科学院沈阳自动化所研究员.2000年, 2004年分别获得吉林大学学士学位和硕士学位; 2008年获得中国科学院沈阳自动化研究所博士学位.主要研究方向为特种机器人, 医疗机器人, 智能机器人控制.E-mail:zhaoxingang@sia.cn

    王争 中国科学院沈阳自动化所博士, 副研究员.主要研究方向为特种机器人, 医疗机器人, 智能机器人控制.E-mail:wzheng@sia.cn

    宋国立 中国科学院沈阳自动化所博士, 助理研究员.主要研究方向为特种机器人, 医疗机器人, 智能机器人控制.E-mail:songgl@sia.cn

    通讯作者:

    韩建达 中国科学院沈阳自动化所研究员, 博士生导师.1990年获得西安交通大学学士学位, 1994年中国科学院沈阳自动化研究所硕士学位, 1998年哈尔滨工业大学博士学位.主要研究方向为机器人自主行为共性技术, 移动、医疗、康复机器人系统研发与应用.本文通信作者.E-mail:jdhan@sia.cn

Data Fusion of Human Skeleton Joint Tracking Using Two Kinect Sensors and Extended Set Membership Filter

Funds: 

Chinese Academy of Sciences Robotics and Manufacture Project C2016001

National Natural Science Foundation of China U1508208

More Information
    Author Bio:

    Ph. D. candidate at the Shenyang Institute of Automation, Chinese Academy of Sciences. He received his bachelor degree from Chongqing University in 2012. His research interest covers motion plan and control of the collaborative robot

    Professor at the Shenyang Institute of Automation, Chinese Academy of Sciences. He received his bachelor and master degrees from Harbin Institute of Technology in 1995 and 1997, and the Ph. D. degree from Shenyang Institute of Automation, Chinese Academy of Sciences in 2000, respectively. His research interest covers specialized robot, medical robot and robotics control

    Professor at the Shenyang Institute of Automation, Chinese Academy of Sciences. He received his bachelor and master degrees from Jilin University in 2000 and 2004; and Ph. D. degree from Shenyang Institute of Automation, Chinese Academy of Sciences in 2008, respectively. His research interest covers specialized robot, medical robot and robotics control

    Ph. D., associate professor at the Shenyang Institute of Automation, Chinese Academy of Sciences. His research interest covers specialized robot, medical robot, and robotics control

    Ph. D., assistant researcher at the Shenyang Institute of Automation, Chinese Academy of Sciences. His research interest covers specialized robot, medical robot and robotics control

    Corresponding author: HAN Jian-Da Professor at the Shenyang Institute of Automation, Chinese Academy of Sciences. He received his bachelor degree from Xi0an Jiaotong University in 1990, master degree from Shenyang Institute of Automation, Chinese Academy of Sciences in 1994, Ph. D. degree from Harbin Institute of Technology in 1998. His research interest covers common technology of autonomy ability of robots, system research and development of moving robot, medical robot and rehabilitant robot. Corresponding author of this paper
  • 摘要: 以Kinect为代表的深度图像传感器在肢体康复系统中得到广泛应用.单一深度图像传感器采集人体关节点数据时由于肢体遮挡、传感器数据错误和丢失等原因降低系统可靠性.本文研究了利用两台Kinect深度图像传感器进行数据融合从而达到消除遮挡、数据错误和丢失的目的,提高康复系统中数据的稳定性和可靠性.首先,利用两台Kinect采集患者健康侧手臂运动数据;其次,对两组数据做时间对准、Bursa线性模型下的坐标变换和基于集员滤波的数据融合;再次,将融合后的健康侧手臂运动数据经过“镜像运动”作为患侧手臂运动指令;最后,将患侧运动指令下发给可穿戴式镜像康复外骨骼带动患者患侧手臂完成三维动画提示的康复动作,达到患者主动可控康复的目的.本文通过Kinect与VICON系统联合实验以及7自由度机械臂控制实验验证了数据融合方法的有效性,以及两台Kinect可有效解决上述问题.
    1)  本文责任编委 程龙
  • 图  1  镜像运动康复医疗系统

    Fig.  1  The mirror movements rehabilitation system

    图  2  镜像运动康复系统的Kinect布置示意图及各坐标系

    Fig.  2  Coordinate system and the layout of Kinect sensors of the mirror movements rehabilitation system

    图  3  镜像运动康复系统流程图

    Fig.  3  Process flow of the mirror movements rehabilitation system

    图  4  主Kinect#1和副Kinect#2的坐标系

    Fig.  4  Coordinates of Kinect#1 and Kinect#2

    图  5  副Kinet#2的坐标系与主Kinect#1沿其$Y$轴旋转90$^{\circ}$之后的坐标系之间满足小角度旋转假设

    Fig.  5  The coordinate of Kinect#2 should meet the small angle rotation condition with the coordinate of Kinect#1 after it rotates 90$^{\circ}$ according to its $Y$ axis

    图  6  Kinect传感器追踪的三个手臂关节点及其三个关节角

    Fig.  6  3 joints and the 3 joint angles tracked by Kinect sensors

    图  7  两台Kinect采样数据的时间对准

    Fig.  7  Time alignment between Kinect#1 and Kinect#2

    图  8  空间对准算法流程图

    Fig.  8  Process flow of registration

    图  9  Kinect数据空间对准实验

    Fig.  9  Experiment result of registration of the two Kinect sensors

    图  10  实验现场对两台Kinect做空间对准的场景

    Fig.  10  Experiment scene of registration of the two Kinect sensors

    图  11  VICON和Kinect同时追踪肢体动作

    Fig.  11  VICON and Kinect sensors tracking the limb joints synchronously

    图  12  Kinect上粘贴的标志点

    Fig.  12  The mark points pasted on the Kinect sensors

    图  13  VICON和Kinect采集的手掌点运动数据对比

    Fig.  13  The movement data of hand from VICON system and Kinect sensor

    图  14  系统误差补偿后的Kinect数据与VICON数据

    Fig.  14  The data from Kinect sensor and data from VICON system using system error compensation

    图  15  ESMF算法原理

    Fig.  15  The scheme of ESMF algorithm

    图  16  ESMF算法对两台Kinect数据融合

    Fig.  16  Data fusion of two Kinect sensors using ESMF

    图  17  镜像运动康复系统综合实验

    Fig.  17  Experiment of the mirror movements rehabilitation system

    表  1  Kinect人体关节点数据误差

    Table  1  The error of Kinect sensor for joints tracking

    坐标 均值(mm) 方差(mm) 区间(mm)
    直角系x -15.4 45.6 [-200 200]
    直角系y -36.1 38.7 [-150 150]
    直角系z 16 54.1 [-200 200]
    球面系r 14.3 54.5 [-200 200]
    球面系φ 0.01 0.03 [-0.1 0.1]
    球面系θ 0.19 0.6 [-1 1]
    下载: 导出CSV

    表  2  数据融合后Kinect人体关节点数据误差

    Table  2  The error of Kinect sensor after data fusion

    坐标 均值(mm) 方差(mm)
    直角系x 0.0 36.7
    直角系y 0.0 34.9
    直角系z 0.0 40.6
    球面系r 0.8 38.4
    球面系φ 0.00 0.02
    球面系θ 0.02 0.60
    下载: 导出CSV
  • [1] Roy A K, Soni Y, Dubey S. Enhancing effectiveness of motor rehabilitation using Kinect motion sensing technology. In:Proceedings of the 2013 IEEE Global Humanitarian Technology Conference. Trivandrum, India:IEEE, 2013. 298-304
    [2] Chang C Y, Lange B, Zhang M, Koenig S, Requejo P, Somboon N, Sawchuk A A, Rizzo A A. Towards pervasive physical rehabilitation using Microsoft Kinect. In:Proceedings of the 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops. San Diego, USA:IEEE, 2012. 159-162
    [3] Chang Y J, Chen S F, Huang J D. A Kinect-based system for physical rehabilitation:a pilot study for young adults with motor disabilities. Research in Developmental Disabilities, 2011, 32(6):2566-2570 doi: 10.1016/j.ridd.2011.07.002
    [4] Nguyen K D, Chen I M, Luo Z, Yeo S H, Duh H B L. A wearable sensing system for tracking and monitoring of functional arm movement. IEEE/ASME Transactions on Mechatronics, 2011, 16(2):213-220 doi: 10.1109/TMECH.2009.2039222
    [5] Kong K, Tomizuka M. Control of exoskeletons inspired by fictitious gain in human model. IEEE/ASME Transactions on Mechatronics, 2009, 14(6):689-698 doi: 10.1109/TMECH.2009.2032685
    [6] Han J G, Shao L, Xu D, Shotton J. Enhanced computer vision with Microsoft Kinect sensor:a review. IEEE Transactions on Cybernetics, 2013, 43(5):1318-1334 doi: 10.1109/TCYB.2013.2265378
    [7] Khoshelham K, Elberink S O. Accuracy and resolution of Kinect depth data for indoor mapping applications. Sensors, 2012, 12(2):1437-1454 https://www.ncbi.nlm.nih.gov/pubmed/22438718
    [8] Choi S M, Jeong J C, Chang J. Dense 3D depth map with DOE pattern. In:Proceedings of the 9th International Conference on Ubiquitous Robots and Ambient Intelligence. Daejeon, Korea:IEEE, 2012. 34-37
    [9] Dutta T. Evaluation of the KinectTM sensor for 3-D kinematic measurement in the workplace. Applied Ergonomics, 2012, 43(4):645-649 doi: 10.1016/j.apergo.2011.09.011
    [10] Stommel M, Beetz M, Xu W L. Inpainting of missing values in the Kinect sensor's depth maps based on background estimates. IEEE Sensors Journal, 2014, 14(4):1107-1116 doi: 10.1109/JSEN.2013.2291315
    [11] Newcombe R A, Izadi S, Hilliges O, Molyneaux D, Kim D, Davison A J, Kohi P, Shotton J, Hodges S, Fitzgibbon A. KinectFusion:real-time dense surface mapping and tracking. In:Proceedings of the 10th IEEE International Symposium on Mixed and Augmented Reality. Basel, Switzerland:IEEE, 2011. 127-136
    [12] 杨东方, 王仕成, 刘华平, 刘志国, 孙富春.基于Kinect系统的场景建模与机器人自主导航.机器人, 2012, 34(5):581-589 doi: 10.3724/SP.J.1218.2012.00581

    Yang Dong-Fang, Wang Shi-Cheng, Liu Hua-Ping, Liu Zhi-Guo, Sun Fu-Chun. Scene modeling and autonomous navigation for robots based on Kinect system. Robot, 2012, 34(5):581-589 doi: 10.3724/SP.J.1218.2012.00581
    [13] Xia L, Chen C C, Aggarwal J K. Human detection using depth information by Kinect. In:Proceedings of the 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Colorado, USA:IEEE, 2011. 15-22
    [14] Zhang Z, Liu W H, Metsis V, Athitsos V. A viewpoint-independent statistical method for fall detection. In:Proceedings of the 21st International Conference on Pattern Recognition. Tsukuba, Japan:IEEE, 2012. 3626-3630
    [15] Obdrzálek S, Kurillo G, Ofli F, Bajcsy R, Seto E, Jimison H, Pavel M. Accuracy and robustness of Kinect pose estimation in the context of coaching of elderly population. In:Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego, USA:IEEE, 2012. 1188-1193
    [16] Štrbac M D, Malešević N M, Čobeljić R, Schwirtlich L. Feedback control of the forearm movement of tetraplegic patient based on Microsoft Kinect and multi-pad electrodes. Journal of Automatic Control, 2013, 21(1):7-11 doi: 10.2298/JAC1301007S
    [17] Edward V, Peña C, Pardo A. Educational robotic platform of low cost for brain and servovisual control practice. Recent Researches in Automatic Control, Systems Science and Communications. Porto:WSEAS Press, 2012. 127-133
    [18] Megalingam R K, Saboo N, Ajithkumar N, Unny S, Menon D. Kinect based gesture controlled robotic arm:a research work at HuT Labs, In:Proceedings of the 2013 IEEE International Conference in MOOC Innovation and Technology in Education. Jaipur, India:IEEE, 2013. 294-299
    [19] Tao G, Archambault P S, Levin M F. Evaluation of Kinect skeletal tracking in a virtual reality rehabilitation system for upper limb hemiparesis. In:Proceedings of the 2013 International Conference on Virtual Rehabilitation. Philadelphia, USA:2013. 164-165
    [20] Li S Y, Pathirana P N, Caelli T. Multi-Kinect skeleton fusion for physical rehabilitation monitoring. In:Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Chicago, USA:IEEE, 2014. 5060-5063
    [21] 朱特浩, 赵群飞, 夏泽洋.利用Kinect的人体动作视觉感知算法.机器人, 2014, 36(6):647-653 http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201406002.htm

    Zhu Te-Hao, Zhao Qun-Fei, Xia Ze-Yang. A visual perception algorithm for human motion by a Kinect. Robot, 2014, 36(6):647-653 http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201406002.htm
    [22] 王文利, 程传录, 陈俊英.常用坐标转换模型及其实用性研究.测绘信息与工程, 2010, 35(5):37-39 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201005017.htm

    Wang Wen-Li, Cheng Chuan-Lu, Chen Jun-Ying. Coordinate transformation models and their practicability. Journal of Geomatics, 2010, 35(5):37-39 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201005017.htm
    [23] 李微晓, 沈云中, 李博峰.顾及2套坐标误差的三维坐标变换方法.同济大学学报(自然科学版), 2011, 39(8):1243-1246 http://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201108028.htm

    Li Wei-Xiao, Shen Yun-Zhong, Li Bo-Feng. Three-dimensional coordinate transformation with consideration of coordinate errors in two coordinate systems. Journal of Tongji University (Natural Science), 2011, 39(8):1243-1246 http://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201108028.htm
    [24] 周波, 钱堃, 马旭东, 戴先中.一种新的基于保证定界椭球算法的非线性集员滤波器.自动化学报, 2013, 39(2):150-158 http://www.aas.net.cn/CN/abstract/abstract17846.shtml

    Zhou Bo, Qian Kun, Ma Xu-Dong, Dai Xian-Zhong. A new nonlinear set membership filter based on guaranteed bounding ellipsoid algorithm. Acta Automatica Sinica, 2013, 39(2):150-158 http://www.aas.net.cn/CN/abstract/abstract17846.shtml
    [25] Gu F, He Y Q, Han J D. Active persistent localization of a three-dimensional moving target under set-membership uncertainty description through cooperation of multiple mobile robots. IEEE Transactions on Industrial Electronics, 2015, 62(8):4958-4971 doi: 10.1109/TIE.2015.2403798
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  2256
  • HTML全文浏览量:  458
  • PDF下载量:  727
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-29
  • 录用日期:  2016-10-14
  • 刊出日期:  2016-12-20

目录

    /

    返回文章
    返回