2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于导纳控制的膝关节外骨骼摆动控制研究

韩亚丽 许有熊 高海涛 朱松青 时煜

韩亚丽, 许有熊, 高海涛, 朱松青, 时煜. 基于导纳控制的膝关节外骨骼摆动控制研究. 自动化学报, 2016, 42(12): 1943-1950. doi: 10.16383/j.aas.2016.c160080
引用本文: 韩亚丽, 许有熊, 高海涛, 朱松青, 时煜. 基于导纳控制的膝关节外骨骼摆动控制研究. 自动化学报, 2016, 42(12): 1943-1950. doi: 10.16383/j.aas.2016.c160080
HAN Ya-Li, XU You-Xiong, GAO Hai-Tao, ZHU Song-Qing, SHI Yu. Knee Joint Exoskeleton Swing Control with Admittance Control. ACTA AUTOMATICA SINICA, 2016, 42(12): 1943-1950. doi: 10.16383/j.aas.2016.c160080
Citation: HAN Ya-Li, XU You-Xiong, GAO Hai-Tao, ZHU Song-Qing, SHI Yu. Knee Joint Exoskeleton Swing Control with Admittance Control. ACTA AUTOMATICA SINICA, 2016, 42(12): 1943-1950. doi: 10.16383/j.aas.2016.c160080

基于导纳控制的膝关节外骨骼摆动控制研究

doi: 10.16383/j.aas.2016.c160080
基金项目: 

校创新基金重大项目 CKJA201605

校创新基金重大项目 CKJA201501

江苏省科技支撑项目 BE2014142

国家自然科学基金 51205182

南京工程学院创新基金 CKJB201202

详细信息
    作者简介:

    许有熊 南京工程学院自动化学院副教授.2010年获得南京理工大学机械工程学院博士学位.主要研究方向为机电一体化.E-mail:zdhxxyx@njit.edu.cn

    高海涛 南京工程学院机械学院副教授.2011年获得东南大学机械学院博士学位.主要研究方向为服务机器人.E-mail:ght@njit.edu.cn

    朱松青 南京工程学院机械学院教授.2009年获得东南大学机械学院博士学位.主要研究方向为机电系统集成, 机器人技术, 机电系统测试与仿真.E-mail:zusongqing@126.com

    时煜 南京工程学院机械学院硕士研究生.主要研究方向为助力外骨骼机器人技术.E-mail:13512518837@163.com

    通讯作者:

    韩亚丽 南京工程学院机械学院副教授.2011年获得东南大学机械工程学院博士学位.主要研究方向为仿生机器人技术及智能控制, 人体运动生物力学.本文通信作者.E-mail:s966237@163.com

Knee Joint Exoskeleton Swing Control with Admittance Control

Funds: 

Major Program of Innovation Fund of Nanjing Institute of Technology CKJA201605

Major Program of Innovation Fund of Nanjing Institute of Technology CKJA201501

the Science and Technology of Jiangsu Province BE2014142

National Natural Science Foundation of China 51205182

Innovation Fund of Nanjing Institute of Technology CKJB201202

More Information
    Author Bio:

    Associate professor at the School of Automation, Nanjing Institute of Technology. He received his Ph. D. degree from Nanjing University of Science and Technology in 2010. His main research interest is mechanotronics

    Associate professor at the School of Mechanical Engineering, Nanjing Institute of Technology. He recived his Ph. D. degree from Southeast University in 2011. His main research interest is service robot

    Professor at the School of Automation, Nanjing Institute of Technology. He received his Ph. D. degree from Southeast University in 2009. His research interest covers electromechanical system integration, robot technology, electromechanical system testing and simulation

    Master student at the School of Mechanical Engineering, Nanjing Institute of Technology. His main research interest is assistive exoskeleton robot technology

    Corresponding author: HAN Ya-Li  Associate professor at the School of Mechanical Engineering, Nanjing Institute of Technology. She received her Ph. D. degree from Southeast University in 2011. Her research interest covers robot technology, intelligent control, and biomechanics research of human motion. Corresponding author of this paper
  • 摘要: 针对膝关节外骨骼机械腿运动过程中对操作者的运动跟随问题,提出了一种基于导纳原理的等效惯量补偿控制方法.设计导纳控制器将外骨骼与操作者间的交互力矩转化为期望的运动轨迹;通过低通滤波加速度与惯量增益的乘积形成的闭环反馈实现等效惯量补偿;结合腿部肌肉表面肌电信号进行人体摆腿运动换向的预判,实施膝关节外骨骼机械腿的摆动控制,实验结果表明,膝关节外骨骼与受试者之间的关节角度相对误差为±12%,膝关节外骨骼机械腿对受试者的摆腿运动能实现较好的运动跟随.
    1)  本文责任编委 赵新刚
  • 图  1  膝关节外骨骼机械腿

    Fig.  1  The knee joint exoskeleton

    图  2  导纳控制模型图

    Fig.  2  The admittance control model diagram

    图  3  基于惯量补偿的导纳控制系统图

    Fig.  3  The admittance control block diagram based on emulated inertia compensation

    图  4  开环传递函数$Y_{e}^{p}(s)Z_{h}(s)$的幅值相位图

    Fig.  4  Frequency-response plots of the open loop transfer function $Y_{e}^{p}(s)Z_{h}(s)$

    图  5  耦合人腿的外骨骼闭环系统$Y_{e}^{h}(s)$的幅值相位图

    Fig.  5  Frequency-response plots of the close loop transfer function $Y_{e}^{h}(s)$ of the coupled human limb-exoskeleton system

    图  6  肌电信号采集系统

    Fig.  6  EMG single acquisition system

    图  7  股二头肌及股四头肌的肌电信号与膝关节角度变化关系图

    Fig.  7  EMG single of the biceps and quadriceps femoris muscle and knee joint angle

    图  8  膝关节机械腿跟随人腿摆动序列图

    Fig.  8  Swing sequence diagram of the knee joint exoskeleton

    图  9  机械腿与受试者关节角度变化图

    Fig.  9  The angle change of the exoskeleton and the operator

  • [1] Yan T F, Cempini M, Oddo C M O, Vitiello N V. Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robotics and Autonomous Systems, 2014, 64:120-136 http://www.docin.com/p-1048805869.html
    [2] Robert B. Exoskeletons and robotic prosthetics:a review of recent developments. Industrial Robot:An International Journal, 2009, 36(5):421-427 doi: 10.1108/01439910910980141
    [3] 胡进, 侯增广, 陈翼雄, 张峰, 王卫群.下肢康复机器人及其交互控制方法.自动化学报, 2014, 40(11):2377-2390 http://www.aas.net.cn/CN/abstract/abstract18514.shtml

    Hu Jin, Hou Zeng-Guang, Chen Yi-Xiong, Zhang Feng, Wang Wei-Qun. Lower limb rehabilitation robots and interactive control methods. Acta Automatica Sinica, 2014, 40(11):2377-2390 http://www.aas.net.cn/CN/abstract/abstract18514.shtml
    [4] Rene J F, Verlinden O. Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Medical Engineering & Physics, 2011, 34(4):397-408 https://www.researchgate.net/publication/51896474_Review_of_control_algorithms_for_robotic_ankle_systems_in_lower-limb_orthoses_prostheses_and_exoskeletons
    [5] 杨巍, 张秀峰, 杨灿军, 吴海杰.基于人机5杆模型的下肢外骨骼系统设计.浙江大学学报(工学版), 2014, 48(3):430-435, 444 http://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201403009.htm

    Yang Wei, Zhang Xiu-Feng, Yang Can-Jun, Wu Hai-Jie. Design of a lower extremity exoskeleton based on 5-bar human machine model. Journal of Zhejiang University (Engineering Science), 2014, 48(3):430-435, 444 http://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201403009.htm
    [6] 孙建, 余永, 葛运建, 陈峰, 沈煌焕.基于接触力信息的可穿戴型下肢助力机器人传感系统研究.中国科学技术大学学报, 2008, 38(12):1432-1438 http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJD200812013.htm

    Sun Jian, Yu Yong, Ge Yun-Jian, Chen Feng, Shen Huang-Huan. Research on multi-sensors perceptual system of wearable power assist leg based on interaction force signal and joint angle signal. Journal of University of Science and Technology of China, 2008, 38(12):1432-1438 http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJD200812013.htm
    [7] 向馗, 易畅, 尹凯阳, 葛运建.一种踝关节行走助力外骨骼的设计.华中科技大学学报(自然科学版), 2015, 43(S1):367-371 http://www.cnki.com.cn/Article/CJFDTOTAL-HZLG2015S1087.htm

    Xiang Kui, Yi Chang, Yin Kai-Yang, Ge Yun-Jian. An ankle exoskeleton for walking assist. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43(S1):367-371 http://www.cnki.com.cn/Article/CJFDTOTAL-HZLG2015S1087.htm
    [8] 韩亚丽, 祁兵, 于建铭, 宋爱国, 朱松青.面向助力膝关节外骨骼的弹性驱动器研制及实验研究.机器人, 2014, 36(6):668-675 http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201406005.htm

    Han Ya-Li, Qi Bing, Yu Jian-Ming, Song Ai-Guo, Zhu Song-Qing. Development and experimental study of elastic actuator for a power-assisted knee exoskeleton. Robot, 2014, 36(6):668-675 http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201406005.htm
    [9] 张立勋, 李长胜, 刘富强.多模式下肢康复训练机器人的设计与实验分析.中国康复医学杂志, 2011, 26(5):464-466 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKF201105021.htm

    Zhang Li-Xun, Li Chang-Sheng, Liu Fu-Qiang. Design and experimental analysis of the multi-mode lower limb rehabilitation robot. Chinese Journal of Rehabilitation Medicine, 2011, 26(5):464-466 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKF201105021.htm
    [10] Kazerooni H, Steger R, Huang L H. Hybrid Control of the Berkeley lower extremity exoskeleton (BLEEX). International Journal of Robotics Research, 2006, 25(5-6):561-573 doi: 10.1177/0278364906065505
    [11] Kawamoto H, Lee S, Kanbe S, Sankai Y. Power assist method for HAL-3 using EMG-based feedback controller. In:Proceedings of the 2003 IEEE International Conference on Systems, Man and Cybernetics. Washington D.C., USA:IEEE, 2003:1648-1653
    [12] Aguirre-Ollinger G, Colgate J E, Peshkin M A, Goswami A. Design of an active one-degree-of-freedom lower-limb exoskeleton with inertia compensation. The International Journal of Robotics Research, 2011, 30(4):486-499 http://www.academia.edu/9932703/Design_of_an_active_one-degree-of-freedom_lower-limb_exoskeleton_with_inertia_compensation
    [13] 刘棣斐, 唐志勇, 裴忠才.基于导纳原理的下肢外骨骼摆动控制.北京航空航天大学学报, 2015, 41(6):1019-1025 http://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201506010.htm

    Liu Di-Fei, Tang Zhi-Yong, Pei Zhong-Cai. Swing motion control of lower extremity exoskeleton based on admittance method. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6):1019-1025 http://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201506010.htm
    [14] Browning R C, Modica J R, Kram R, Goswami A. The effects of adding mass to the legs on the energetics and biomechanics of walking. Medicine and Science in Sports and Exercise, 2007, 39(3):515-525 doi: 10.1249/mss.0b013e31802b3562
    [15] Royer T D, Martin P E. Manipulations of leg mass and moment of inertia:effects on energy cost of walking. Medicine and Science in Sports and Exercise, 2005, 37(4):649-656 doi: 10.1249/01.MSS.0000159007.56083.96
    [16] Doke J, Donelan J M, Kuo A D. Mechanics and energetics of swinging the human leg. Journal of Experimental Biology, 2005, 208(3):439-445 doi: 10.1242/jeb.01408
    [17] Han Y L, Wang X S. The biomechanical study of lower limb during human walking. Science China Technological Sciences, 2011, 54(4):983-991 doi: 10.1007/s11431-011-4318-z
  • 加载中
图(9)
计量
  • 文章访问数:  2542
  • HTML全文浏览量:  337
  • PDF下载量:  881
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-25
  • 录用日期:  2016-10-10
  • 刊出日期:  2016-12-01

目录

    /

    返回文章
    返回