Closed-loop Subspace Model Identification Using Innovation Estimation and Orthogonal Projection
-
摘要: 针对闭环控制系统提出一种基于新息估计和正交投影的闭环子空间模型辨识方法.首先采用最小二乘法对VARX模型(Vector autoregressive with exogenous inputs model)进行计算得到新息估计值,然后通过将由观测输入输出数据构造的Hankel矩阵正交投影到新息数据的正交补空间以消除噪声影响,从而在无噪声的输入输出数据奇偶空间中提取得到扩展可观测矩阵和下三角形Toeplitz矩阵.最后采用平移变换法得到系统矩阵.对该算法严格分析和证明了实现一致估计的条件.通过仿真实例验证了本文方法的有效性和优越性.Abstract: In this paper, a closed-loop subspace model identification method using innovation estimation and orthogonal projection is proposed for closed-loop control systems. Firstly, a least-squares algorithm is adopted to estimate the innovation matrix via the vector autoregressive with exogenous inputs (VARX) model. Then, by performing an orthogonal projection of the observed input-output Hankel matrix onto the orthogonal complement space of innovation Hankel matrix to eliminate the influence from noise, the extended observability matrix and lower triangular block Toeplitz matrix are derived from the parity space of noise-free input-output data. Finally, the system matrices are retrieved by using a shift-invariant approach. The consistent estimation conditions are analyzed with a strict proof. A simulation example is shown to demonstrate the effectiveness and merit of the proposed method.
-
-
[1] Qin S J. An overview of subspace identification. Computers Chemical and Engineering, 2006, 30(10-12): 1502-1513 doi: 10.1016/j.compchemeng.2006.05.045 [2] Favoreel W, de Moor B, van Overschee P. Subspace state space system identification for industrial processes. Journal of Process Control, 2000, 10(2-3): 149-155 doi: 10.1016/S0959-1524(99)00030-X [3] 杨华, 李少远. 基于输入扩张的闭环系统子空间辨识及其强一致性分析. 自动化学报, 2007, 33(7): 703-708 http://www.aas.net.cn/CN/abstract/abstract14311.shtmlYang Hua, Li Shao-Yuan. Closed-loop subspace identification based on augmented input with consistency analysis. Acta Automatica Sinica, 2007, 33(7): 703-708 http://www.aas.net.cn/CN/abstract/abstract14311.shtml [4] 王乐一, 赵文虓. 系统辨识: 新的模式、挑战及机遇. 自动化学报, 2013, 39(7): 933-942 doi: 10.1016/S1874-1029(13)60062-2Wang Le-Yi, Zhao Wen-Xiao. System identification: new paradigms, challenges, and opportunities. Acta Automatica Sinica, 2013, 39(7): 933-942 doi: 10.1016/S1874-1029(13)60062-2 [5] van der Veen G J, van Wingerden J W, Bergamasco M, Lovera M, Verhaegen M. Closed-loop subspace identification methods: an overview. IET Control Theory and Applications, 2013, 7(10): 1339-1358 doi: 10.1049/iet-cta.2012.0653 [6] Wang J, Qin S J. Closed-loop subspace identification using the parity space. Automatica, 2006, 42(2): 315-320 doi: 10.1016/j.automatica.2005.09.012 [7] Huang B, Ding S X, Qin S J. Closed-loop subspace identification: an orthogonal projection approach. Journal of Process Control, 2005, 15(1): 53-66 doi: 10.1016/j.jprocont.2004.04.007 [8] Chiuso A. The role of vector autoregressive modeling in predictor-based subspace identification. Automatica, 2007, 43(6): 1034-1048 doi: 10.1016/j.automatica.2006.12.009 [9] Qin S J, Ljung L. Closed-loop subspace identification with innovation estimation. In: Proceedings of the 13th IFAC System Identification. Rotterdam, Netherlands: IFAC, 2003. 887-892 [10] Katayama T.Subspace Methods for System Identification. London: Springer-Verlag, 2005, 107-137 [11] Jansson M, Wahlberg B. On consistency of subspace methods for system identification. Automatica, 1998, 34(12): 1507-1519 doi: 10.1016/S0005-1098(98)80004-6 [12] Liu T, Huang B, Qin S J. Bias-eliminated subspace model identification under time-varying deterministic type load disturbance. Journal of Process Control, 2015, 25: 41-49 doi: 10.1016/j.jprocont.2014.10.008 [13] Wang J, Qin S J. A new subspace identification approach based on principal component analysis. Journal of Process Control, 2002, 12(8): 841-855 doi: 10.1016/S0959-1524(02)00016-1 期刊类型引用(15)
1. 耿艳利,刘松岳,王希瑞,宣伯凯. 电动下肢假肢多路况控制策略研究. 中国康复医学杂志. 2024(02): 226-231 . 百度学术
2. 汪晓铭,黎林荣,陈长龙,孙洁,张哲文,孟巧玲,喻洪流. 人-机-环境共融的智能假肢膝关节研究进展. 中国生物医学工程学报. 2023(04): 486-501 . 百度学术
3. 韩亚丽,韩子,金壮壮,徐闽海,吴应达. 一种主动型踝关节助力外骨骼设计及性能实验. 仪器仪表学报. 2023(11): 109-118 . 百度学术
4. 刘克平,滕召纬,孙中波,李婉婷. 基于自适应模糊神经网络的下肢关节角度估计. 计算机仿真. 2022(09): 456-461 . 百度学术
5. 盛敏,唐少波. 融合统计和几何特征的运动意图识别方法. 安庆师范大学学报(自然科学版). 2021(01): 34-39 . 百度学术
6. 刘作军,许长寿,陈玲玲,张燕. 智能假肢膝关节的研发要点及其研究进展综述. 包装工程. 2021(10): 54-63 . 百度学术
7. 崔建伟,李志钢,曹尔凡,杜韩,陆普东. 基于人体上肢运动信息的助残手抓取意图识别方法. 中国惯性技术学报. 2021(02): 250-255 . 百度学术
8. 刘磊,杨鹏,刘作军,宋寅卯. 基于多核学习极限学习机的助行机器人运动相容性识别. 高技术通讯. 2021(09): 978-985 . 百度学术
9. 苏本跃,倪钰,盛敏,赵丽丽. 基于改进卷积神经网络的动力下肢假肢运动意图识别. 控制与决策. 2021(12): 3031-3038 . 百度学术
10. 黄品高,黄剑平,黄博俊,方鹏,刘志远,李光林. 实现下肢假肢智能仿生控制的神经功能重建及行走意图识别方法. 中国科学基金. 2021(S1): 227-235 . 百度学术
11. 滕召纬,孙中波,刘克平. 基于自适应模糊神经网络的下肢关节运动意图估计. 长春工业大学学报. 2020(06): 558-562 . 百度学术
12. 盛敏,刘双庆,王婕,苏本跃. 基于GMM-HMM模型的智能下肢假肢运动意图识别. 仪器仪表学报. 2019(05): 169-178 . 百度学术
13. 刘双庆. 基于LSTM深度学习模型的智能下肢假肢运动意图识别. 合肥学院学报(综合版). 2019(05): 96-104 . 百度学术
14. 杨帆,王远,郭鹏程. 针对下肢残障人士的无障碍卫浴产品设计分析. 工业设计. 2019(11): 48-49 . 百度学术
15. 刘磊,陈增强,杨鹏,刘作军. 采用鱼群算法进化极限学习机的假肢步态识别. 振动.测试与诊断. 2019(06): 1225-1231+1360-1361 . 百度学术
其他类型引用(22)
-