2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于新息估计和正交投影的闭环子空间模型辨识

侯杰 刘涛

侯杰, 刘涛. 基于新息估计和正交投影的闭环子空间模型辨识. 自动化学报, 2016, 42(11): 1657-1663. doi: 10.16383/j.aas.2016.c160050
引用本文: 侯杰, 刘涛. 基于新息估计和正交投影的闭环子空间模型辨识. 自动化学报, 2016, 42(11): 1657-1663. doi: 10.16383/j.aas.2016.c160050
HOU Jie, LIU Tao. Closed-loop Subspace Model Identification Using Innovation Estimation and Orthogonal Projection. ACTA AUTOMATICA SINICA, 2016, 42(11): 1657-1663. doi: 10.16383/j.aas.2016.c160050
Citation: HOU Jie, LIU Tao. Closed-loop Subspace Model Identification Using Innovation Estimation and Orthogonal Projection. ACTA AUTOMATICA SINICA, 2016, 42(11): 1657-1663. doi: 10.16383/j.aas.2016.c160050

基于新息估计和正交投影的闭环子空间模型辨识

doi: 10.16383/j.aas.2016.c160050
基金项目: 

中央高校基本科研业务费重点培育基金 DUT15ZD108

国家自然科学基金 61473054

详细信息
    作者简介:

    侯杰 大连理工大学控制科学与工程学院博士研究生.主要研究方向为系统辨识.E-mail:jiehou.phd@hotmail.com

    通讯作者:

    刘涛 大连理工大学控制科学与工程学院教授. 德国洪堡基金学者.主要研究方向为工业过程辨识建模, 鲁棒过程控制, 批量生产过程控制优化, 过程质量监测. E-mail:liurouter@ieee.org

Closed-loop Subspace Model Identification Using Innovation Estimation and Orthogonal Projection

Funds: 

Fundamental Research Funds for the Central Universities of China DUT15ZD108

Supported by National Natural Science Foundation of China 61473054

More Information
    Author Bio:

    Ph. D. candidate at the School of Control Science and Engineer-ing, Dalian University of Technology. His main research interest is system identifi-cation.E-mail:

    Corresponding author: (LIU Tao Professor at the School of Control Science and Engineering, Dalian University of Technology. He was a recipient of a Humboldt research fellow of Germany. His research in-terest covers industrial process identi¡¥cation and modeling, robust process control, batch process control and optimiza-tion, and process quality monitoring. Corresponding au-thor of this paper.). E-mail:liurouter@ieee.org
  • 摘要: 针对闭环控制系统提出一种基于新息估计和正交投影的闭环子空间模型辨识方法.首先采用最小二乘法对VARX模型(Vector autoregressive with exogenous inputs model)进行计算得到新息估计值,然后通过将由观测输入输出数据构造的Hankel矩阵正交投影到新息数据的正交补空间以消除噪声影响,从而在无噪声的输入输出数据奇偶空间中提取得到扩展可观测矩阵和下三角形Toeplitz矩阵.最后采用平移变换法得到系统矩阵.对该算法严格分析和证明了实现一致估计的条件.通过仿真实例验证了本文方法的有效性和优越性.
  • 图  1  系统设定输入激励为白噪声的系统极点估计平均值

    Fig.  1  Mean value of estimated poles for white noise setpoint excitation

    图  2  系统设定输入激励为白噪声的系统极点估计标准方差

    Fig.  2  Standard deviation of estimated poles for white noise setpoint excitation

    图  3  系统设定输入激励为相关序列的系统极点估计平均值

    Fig.  3  Mean value of estimated poles for correlated quasi-stationary setpoint excitation

    图  4  系统设定输入激励为相关序列的系统极点估计标准方差

    Fig.  4  Standard deviation of estimated poles for correlated quasi-stationary setpoint excitation

  • [1] Qin S J. An overview of subspace identification. Computers Chemical and Engineering, 2006, 30(10-12): 1502-1513 doi: 10.1016/j.compchemeng.2006.05.045
    [2] Favoreel W, de Moor B, van Overschee P. Subspace state space system identification for industrial processes. Journal of Process Control, 2000, 10(2-3): 149-155 doi: 10.1016/S0959-1524(99)00030-X
    [3] 杨华, 李少远. 基于输入扩张的闭环系统子空间辨识及其强一致性分析. 自动化学报, 2007, 33(7): 703-708 http://www.aas.net.cn/CN/abstract/abstract14311.shtml

    Yang Hua, Li Shao-Yuan. Closed-loop subspace identification based on augmented input with consistency analysis. Acta Automatica Sinica, 2007, 33(7): 703-708 http://www.aas.net.cn/CN/abstract/abstract14311.shtml
    [4] 王乐一, 赵文虓. 系统辨识: 新的模式、挑战及机遇. 自动化学报, 2013, 39(7): 933-942 doi: 10.1016/S1874-1029(13)60062-2

    Wang Le-Yi, Zhao Wen-Xiao. System identification: new paradigms, challenges, and opportunities. Acta Automatica Sinica, 2013, 39(7): 933-942 doi: 10.1016/S1874-1029(13)60062-2
    [5] van der Veen G J, van Wingerden J W, Bergamasco M, Lovera M, Verhaegen M. Closed-loop subspace identification methods: an overview. IET Control Theory and Applications, 2013, 7(10): 1339-1358 doi: 10.1049/iet-cta.2012.0653
    [6] Wang J, Qin S J. Closed-loop subspace identification using the parity space. Automatica, 2006, 42(2): 315-320 doi: 10.1016/j.automatica.2005.09.012
    [7] Huang B, Ding S X, Qin S J. Closed-loop subspace identification: an orthogonal projection approach. Journal of Process Control, 2005, 15(1): 53-66 doi: 10.1016/j.jprocont.2004.04.007
    [8] Chiuso A. The role of vector autoregressive modeling in predictor-based subspace identification. Automatica, 2007, 43(6): 1034-1048 doi: 10.1016/j.automatica.2006.12.009
    [9] Qin S J, Ljung L. Closed-loop subspace identification with innovation estimation. In: Proceedings of the 13th IFAC System Identification. Rotterdam, Netherlands: IFAC, 2003. 887-892
    [10] Katayama T.Subspace Methods for System Identification. London: Springer-Verlag, 2005, 107-137
    [11] Jansson M, Wahlberg B. On consistency of subspace methods for system identification. Automatica, 1998, 34(12): 1507-1519 doi: 10.1016/S0005-1098(98)80004-6
    [12] Liu T, Huang B, Qin S J. Bias-eliminated subspace model identification under time-varying deterministic type load disturbance. Journal of Process Control, 2015, 25: 41-49 doi: 10.1016/j.jprocont.2014.10.008
    [13] Wang J, Qin S J. A new subspace identification approach based on principal component analysis. Journal of Process Control, 2002, 12(8): 841-855 doi: 10.1016/S0959-1524(02)00016-1
  • 加载中
图(4)
计量
  • 文章访问数:  1880
  • HTML全文浏览量:  163
  • PDF下载量:  679
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-19
  • 录用日期:  2016-03-10
  • 刊出日期:  2016-11-01

目录

    /

    返回文章
    返回