2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向炼钢—连铸调度过程的两阶段优化模型与算法

王秀英 冯惠 任志考 周艳平

王秀英, 冯惠, 任志考, 周艳平. 面向炼钢—连铸调度过程的两阶段优化模型与算法. 自动化学报, 2016, 42(11): 1702-1710. doi: 10.16383/j.aas.2016.c160005
引用本文: 王秀英, 冯惠, 任志考, 周艳平. 面向炼钢—连铸调度过程的两阶段优化模型与算法. 自动化学报, 2016, 42(11): 1702-1710. doi: 10.16383/j.aas.2016.c160005
WANG Xiu-Ying, FENG Hui, REN Zhi-Kao, ZHOU Yan-Ping. Two-stage Optimal Modeling and Algorithm of Production Scheduling for Steelmaking and Continuous Casting. ACTA AUTOMATICA SINICA, 2016, 42(11): 1702-1710. doi: 10.16383/j.aas.2016.c160005
Citation: WANG Xiu-Ying, FENG Hui, REN Zhi-Kao, ZHOU Yan-Ping. Two-stage Optimal Modeling and Algorithm of Production Scheduling for Steelmaking and Continuous Casting. ACTA AUTOMATICA SINICA, 2016, 42(11): 1702-1710. doi: 10.16383/j.aas.2016.c160005

面向炼钢—连铸调度过程的两阶段优化模型与算法

doi: 10.16383/j.aas.2016.c160005
基金项目: 

山东省高等学校科技计划项目 J14LN31

国家自然科学基金 61104004

山东省自然科学基金 ZR2014FL019

详细信息
    作者简介:

    冯惠 青岛科技大学信息科学技术学院硕士研究生.主要研究方向为智能优化算法, 生产计划与生产调度.E-mail:huifeng0411@163.com

    任志考 青岛科技大学信息科学技术学院副教授.主要研究方向为智能优化算法, 无线网络技术, 机器人通信, 云服务技术.E-mail:rzk_888@163.com

    周艳平 青岛科技大学信息科学技术学院副教授.分别于2003年和2013年在青岛科技大学和华东理工大学获得硕士和博士学位.主要研究方向为智能优化算法, 生产计划与生产调度.E-mail:zypweb@163.com

    通讯作者:

    王秀英 青岛科技大学信息科学技术学院教授.2012年获得东北大学博士学位.主要研究方向为生产计划与调度理论和方法, 智能优化算法.E-mail:bywxy@126.com

Two-stage Optimal Modeling and Algorithm of Production Scheduling for Steelmaking and Continuous Casting

Funds: 

Higher Educational Science and Technology Program of Shandong Province J14LN31

National Natural Science Foundation of China 61104004

Natural Science Foundation of Shandong Province ZR2014FL019

More Information
    Author Bio:

    Master student at the School of Information Science and Engineering, Qingdao University of Science and Technology. Her research interest covers intelligent optimization algorithm, production planning and scheduling.

    Associated professor at the School of Information Science and Technology, Qingdao University of Science and Technology. His research interest covers intelligent optimization algorithms, wireless network technology, robot communication and cloud-service technology.

    Associated professor at the School of Information Science and Technology, Qingdao University of Science and Technology. He received his master degree from Qingdao University of Science and Technology in 2003, and Ph.,D. degree from East China University of Science and Technology in 2013. His research interest covers intelligent optimization algorithm, production planning and scheduling.

    Corresponding author: WANG Xiu-Ying Professor at the School of Information Science and Technology, Qingdao University of Science and Technology. She received her Ph.,D. degree from Northeastern University in 2012. Her research interest covers theory and method of production planning and scheduling, and intelligent optimization algorithms. Corresponding author of this paper.
  • 摘要: 以某钢厂多台转炉及多台精炼炉对多台连铸机的复杂生产线为研究对象,针对其调度过程涉及多设备、多目标、多约束等调度要素,且离散和连续变量混杂,采用常规建模方法难以满足现场对调度的精度及排产速度的需求问题,提出一种新型的两阶段优化建模方法.首先,证明了炉次从炼钢到连铸总等待时间最小的调度目标与该炉次在转炉开始作业时间最大是等价的事实,并以离散型的设备变量为决策变量,以转炉开始作业时间最大为动态规划最优指标,建立设备指派多阶段动态规划基本方程和设备指派优化模型;然后,以炉次在设备开始作业时间的连续型变量为决策变量,并将准时开浇的非线性调度指标转化成与之等价的线性优化目标,以在同一台连铸机上浇铸的炉次之间断浇的时间间隔最小、钢包在设备之间的冗余等待时间最小、提前与滞后理想开浇时间的时间间隔最小为目标,建立线性规划冲突解消模型.工业实验表明所提出两阶段优化建模方法在求解速度与求解精度均满足现场要求.
  • 图  1  炼钢-连铸生产工艺过程

    Fig.  1  Production process of steelmaking-continuous casing

    图  2  基于动态规划10个炉次的粗调度甘特图

    Fig.  2  Gantt chart of ten charges rough scheduling based on dynamic programming

    图  3  10个炉次冲突解消后的调度甘特图

    Fig.  3  Scheduling Gantt chart after ten charges machine conflicts eliminated

    i浇次序号,i = 1,2,3, $\cdots,N$ ;
    Nii个浇次中的炉次数;
    j 炉次序号,j = 1,2,...,Ni;
    Liji个浇次的第j个炉次;
    $\vartheta_{ij}$ 炉次Lij从转炉到连铸工序的加工设 备总数; 浇次计划中的精炼方式确定后, $\vartheta_{ij}$ 的取值就确定了;
    θ炉次Lij从转炉到连铸加工的顺序号, θ = 1,2,..., $\vartheta_{ij}$ ;
    g表示设备类,g = 1,2,3,...,G,如g = 1表示转炉设备; $g = 2$ 表示第一类 精炼设备类, $g = G$ 表示连铸设备类;
    Ti 浇次i的理想开浇时间,由现场给定;
    Mg 表示第g类设备中含有的并行机数;
    kg设备变量,表示g类设备的第k个设 备序号; kg = 1,2,3 $,\cdots$ ,Mg;
    Tij( $k_{g(\theta)})$ 炉次Lij的第θ个操作在第g类设备的 第 $k_{g(\theta)}$ 个设备上的加工时间;当θ不 同时,炉次Lij的操作设备类型g也不 同,所以,gθ的函数,即g = $g(\theta)$ , kg = $k_{g(\theta)}$ ;对于连铸设备,不同炉次在 连铸机的处理时间是不尽相同的.所以, 处理时间Tij( $k_{g(\theta)}$ )是设备变量 $k_{g(\theta)}$ 的函数;
    Tij( $k_{g(\theta)}$ , $k_{g(\theta+1) }$ ) 炉次Lij从第θ个操作设备 $k_{g(\theta)}$ 到第 $\theta+1$ 个操作设备 $k_{g(\theta+1) }$ 之间的运输时 间.由于炉次Lij的第θ和 $\theta+1$ 个操 作设备不同,其运输时间也不尽相同,所 以运输时间Tij( $k_{g(\theta)}$ , $k_{g(\theta+1) }$ )是炉次上 下操作设备的函数;
    yij( $k_{g(\theta)}$ ) 设备变量 $k_{g(\theta)}$ 的函数,当yij( $k_{g(\theta)}$ ) = 1,表示炉次Lij的第θ个操作在g类设 备上的第 $k_{g(\theta)}$ 个设备上加工;否则, yij( $k_{g(\theta)}$ ) = 0;
    xij( $k_{g(\theta)}$ ) 称为时间变量.炉次Lij的第θ个操作在 第g类设备的第 $k_{g(\theta)}$ 个机器上加工的开始时间.
    下载: 导出CSV

    表  1  三个浇次10个炉次计划的初始数据

    Table  1  Initial data of three cast including ten charges

    浇次号 炉次号 制造命令号 钢号精炼方式 浇铸目的地
    1115578DV3943D1R1#CC
    12115579DT0192D1R1#CC
    3115580DV3948D1R1#CC
    4115769DT0138D1R1#CC
    5118275AP0740D5C2#CC
    26118277AP0740D5C2#CC
    7118281DV3943D1R2#CC
    8461348DV3943D1R3#CC
    39461349DV3943D1R3#CC
    10461350DV3943D1RK3#CC
    下载: 导出CSV

    表  2  基于动态规划的设备指派结果

    Table  2  Equipment assignment base on dynamic programming

    浇次号炉次号设备指派结果设备处理时间运输时间(分钟)
    112#LD-1#RH-1#CC35,36,488,14
    22#LD-1#RH-1#CC35,36,398,14
    32#LD-1#RH-1#CC35,36,528,14
    42#LD-1#RH-1#CC35,36,458,14
    53#LD-1#CAS-2#CC35,30,499,12
    263#LD-1#CAS-2#CC35,30,619,12
    73#LD-2#RH-2#CC35,36,429,15
    81#LD-3#RH-3#CC35,36,648,20
    391#LD-3#RH-3#CC35,36,648,20
    101#LD-3#RH-KIP-3#CC35,36,25,438,9,19
    下载: 导出CSV

    表  3  基于动态规划的10个炉次粗调度时刻表

    Table  3  Ten charges rough schedule base on dynamic programming

    炉次号转炉精炼1 精炼2 连铸
    15:446:196:277:03--7:178:05
    26:327:077:157:51--8:058:44
    37:117:467:548:30--8:449:36
    48:038:388:469:22--9:3610:21
    55:446:196:286:58--7:107:59
    66:337:087:177:47--7:599:00
    77:258:008:098:45--9:009:42
    85:466:216:297:05--7:258:29
    96:507:257:338:09--8:299:33
    107:217:568:048:408:499:149:3310:16
    下载: 导出CSV

    表  4  10 个炉次机器冲突解消后的调度表

    Table  4  Ten charges schedule table after conflicts eliminated

    炉次号转炉精炼1 精炼2 连铸
    15:446:196:277:03--7:178:05
    26:327:077:157:51--8:058:44
    37:117:467:548:30--8:449:36
    48:038:388:469:22--9:3610:21
    55:446:196:286:58--7:107:59
    66:337:087:177:47--7:599:00
    77:258:008:098:45--9:009:42
    85:466:216:297:05--7:258:29
    96:457:207:288:04--8:299:33
    107:217:568:048:408:499:149:3310:16
    下载: 导出CSV
  • [1] 吴启迪, 乔非, 李莉, 吴莹. 基于数据的复杂制造过程调度. 自动化学报, 2009, 35(6): 807-813 doi: 10.3724/SP.J.1004.2009.00807

    Wu Qi-Di, Qiao Fei, Li Li, Wu Ying. Data-based scheduling for complex manufacturing processes. Acta Automatica Sinica, 2009, 35(6): 807-813 doi: 10.3724/SP.J.1004.2009.00807
    [2] 王秀英, 柴天佑, 郑秉霖. 炼钢—连铸智能调度软件的开发及应用. 计算机集成制造系统, 2006, 12(8): 1220-1226 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ200608010.htm

    Wang Xiu-Ying, Chai Tian-You, Zheng Bing-Lin. Intelligent scheduling software & its application in steelmaking and continuous casting. Computer Integrated Manufacturing Systems, 2006, 12(8): 1220-1226 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ200608010.htm
    [3] Missbauer H, Hauber W, Stadler W. A scheduling system for the steelmaking-continuous casting process. A case study from the steel-making industry. International Journal of Production Research, 2009, 47(15): 4147-4172
    [4] Pacciarelli D, Pranzo M. Production scheduling in a steelmaking-continuous casting plant. Computers and Chemical Engineering, 2004, 28(12): 2823-2835 doi: 10.1016/j.compchemeng.2004.08.031
    [5] 黄敏, 付亚平, 王洪峰, 朱兵虎, 王兴伟. 设备带有恶化特性的作业车间调度模型与算法. 自动化学报, 2015, 41(3): 551-558 http://www.aas.net.cn/CN/abstract/abstract18633.shtml

    Huang Min, Fu Ya-Ping, Wang Hong-Feng, Zhu Bing-Hu, Wang Xing-Wei. Job-shop scheduling model and algorithm with machine deterioration. Acta Automatica Sinica, 2015, 41(3): 551-558 http://www.aas.net.cn/CN/abstract/abstract18633.shtml
    [6] Bellabdaoui A, Teghem J. A mixed-integer linear programming model for the continuous casting planning. International Journal of Production Economics, 2006, 104(2): 260-270 doi: 10.1016/j.ijpe.2004.10.016
    [7] Mao K, Pan Q K, Pang X F, Chai T Y. A novel Lagrangian relaxation approach for a hybrid flowshop scheduling problem in the steelmaking-continuous casting process. European Journal of Operational Research, 2014, 236(1): 51-60 doi: 10.1016/j.ejor.2013.11.010
    [8] Tang L X, Zhao Y, Liu J Y. An improved differential evolution algorithm for practical dynamic scheduling in steelmaking-continuous casting production. IEEE Transactions on Evolutionary Computation, 2014, 18(2): 209-225 doi: 10.1109/TEVC.2013.2250977
    [9] Sbihi A, Bellabdaoui A, Teghem J. Solving a mixed integer linear program with times setup for the steel-continuous casting planning and scheduling problem. International Journal of Production Research, 2014, 52(24): 7276-7296 doi: 10.1080/00207543.2014.919421
    [10] 俞胜平, 柴天佑. 开工时间延迟下的炼钢—连铸生产重调度方法. 自动化学报, 2016, 42(3): 358-374 http://www.aas.net.cn/CN/abstract/abstract18826.shtml

    Yu Sheng-Ping, Chai Tian-You. Rescheduling method for starting time delay in steelmaking and continuous casting production processes. Acta Automatica Sinica, 2016, 42(3): 358-374 http://www.aas.net.cn/CN/abstract/abstract18826.shtml
    [11] Tan Y Y, Liu S X. Models and optimisation approaches for scheduling steelmaking-refining-continuous casting production under variable electricity price. International Journal of Production Research, 2014, 52(4): 1032-1049 doi: 10.1080/00207543.2013.828179
    [12] 李铁克, 苏志雄. 炼钢连铸生产调度问题的两阶段遗传算法. 中国管理科学, 2009, 17(5): 68-74 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGGK200905010.htm

    Li Tie-Ke, Su Zhi-Xiong. Two-stage genetic algorithm for SM-CC production scheduling. Chinese Journal of Management Science, 2009, 17(5): 68-74 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGGK200905010.htm
    [13] Atighehchian A, Bijari M, Tarkesh H. A novel hybrid algorithm for scheduling steel-making continuous casting production. Computers & Operations Research, 2009, 36(8): 2450-2461 http://cn.bing.com/academic/profile?id=2060539563&encoded=0&v=paper_preview&mkt=zh-cn
    [14] Pan L, Yu S P, Zheng B L, Chai T Y. Cast batch planning for steelmaking and continuous casting based on ant colony algorithm. In: Proceedings of the 2010 International Symposium on Computational Intelligence and Design. Hangzhou, China: IEEE, 2010. 244-247
    [15] Li J Q, Pan Q K, Mao K, Suganthan P N. Solving the steelmaking casting problem using an effective fruit fly optimisation algorithm. Knowledge-Based Systems, 2014, 72: 28-36 doi: 10.1016/j.knosys.2014.08.022
    [16] Pan Q K. An effective co-evolutionary artificial bee colony algorithm for steelmaking-continuous casting scheduling. European Journal of Operational Research, 2016, 250(3): 702-714 doi: 10.1016/j.ejor.2015.10.007
    [17] Wang X Y, Jiang X J, Wang H H. Optimal modeling and analysis of steelmaking and continuous casting production scheduling. In: Proceedings of the 11th World Congress on Intelligent Control and Automation. Shenyang, China: IEEE, 2014. 5057-5062
    [18] 王秀英. 炼钢—连铸混合优化调度方法及应用[博士学位论文], 东北大学, 中国, 2012

    Wang Xiu-Ying. Hybrid Optimization Scheduling Method of Steelmaking and Continuous Casting and its Application [Ph.D. dissertation], Northeastern University, China, 2012
    [19] 王秀英, 柴天佑, 郑秉霖. 炼钢—连铸调度模型参数优化设定方法. 系统工程学报, 2011, 26(4): 531-537 http://www.cnki.com.cn/Article/CJFDTOTAL-XTGC201104015.htm

    Wang Xiu-Ying, Chai Tian-You, Zheng Bing-Lin. Parameter optimization setting of steel making and continuous casting scheduling model. Journal of Systems Science and Systems Engineering, 2011, 26(4): 531-537 http://www.cnki.com.cn/Article/CJFDTOTAL-XTGC201104015.htm
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  1797
  • HTML全文浏览量:  165
  • PDF下载量:  908
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-06
  • 录用日期:  2016-06-22
  • 刊出日期:  2016-11-01

目录

    /

    返回文章
    返回