2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于傅里叶级数的小推力航天器快速轨迹设计

曾奎 耿云海 陈炳龙

曾奎, 耿云海, 陈炳龙. 基于傅里叶级数的小推力航天器快速轨迹设计. 自动化学报, 2016, 42(11): 1641-1647. doi: 10.16383/j.aas.2016.c150859
引用本文: 曾奎, 耿云海, 陈炳龙. 基于傅里叶级数的小推力航天器快速轨迹设计. 自动化学报, 2016, 42(11): 1641-1647. doi: 10.16383/j.aas.2016.c150859
ZENG Kui, GENG Yun-Hai, CHEN Bing-Long. Rapid Design of Low-thrust Rendezvous Trajectory with Fourier Series. ACTA AUTOMATICA SINICA, 2016, 42(11): 1641-1647. doi: 10.16383/j.aas.2016.c150859
Citation: ZENG Kui, GENG Yun-Hai, CHEN Bing-Long. Rapid Design of Low-thrust Rendezvous Trajectory with Fourier Series. ACTA AUTOMATICA SINICA, 2016, 42(11): 1641-1647. doi: 10.16383/j.aas.2016.c150859

基于傅里叶级数的小推力航天器快速轨迹设计

doi: 10.16383/j.aas.2016.c150859
基金项目: 

国家自然科学基金资助 61473096

详细信息
    作者简介:

    曾奎 哈尔滨工业大学卫星技术研究所博士研究生.主要研究方向为小推力航天器轨迹设计.E-mail:zenghit@126.com

    陈炳龙博士, 上海微小卫星工程中心工程师.主要研究方向为航天器动力学与控制. E-mail:chenbinglonghit@163.com

    通讯作者:

    耿云海博士,哈尔滨工业大学航天学院教授. 主要研究方向为飞行器动力学与控制.E-mail:gengyh@hit.edu.cn .

Rapid Design of Low-thrust Rendezvous Trajectory with Fourier Series

Funds: 

Supported by National Natural Science Foundation of China 61473096

More Information
    Author Bio:

    Ph.D. candidate at the Research Center of Satellite Technology, Harbin Institute of Technology. His research interest covers low-thrust spacecraft trajectory design.

    Ph.D., engineer at Shanghai Engineering Center for Micro-Satellite. His research interest covers spacecraft dynamic and control.

    Corresponding author: GENG Yun-HaiProfessor at the Astronautics School, Harbin Institute of Technology. His research interest covers astrodynamics and control. Corresponding author of this paper.
  • 摘要: 为了满足小推力航天器交会轨迹的快速性设计需求,基于形状逼近理论,设计了一种三维轨迹模型.将轨迹设计问题转换为求解傅里叶级数的系数问题,避免了轨迹运动方程非线性强、难以求解的难题,极大地提高了计算效率.考虑到推力加速度的限制,建立了加速度约束方程,并结合轨迹的运动方程,给出了傅里叶级数的求解过程.同时根据边界条件和最大推力加速度值,定性地分析了傅里叶系数的存在条件.仿真验证了该方法的正确性和可行性,并从计算效率上与高斯伪谱法进行了对比,结果表明本文的方法计算耗时仅为高斯伪谱法的0.67%.
  • 图  1  柱坐标系

    Fig.  1  Cylindrical coordinate system

    图  2  极角的定义

    Fig.  2  De¯nitions of angles

    图  3  航天器轨迹

    Fig.  3  Spacecraft trajectories

    图  4  地心距的变化

    Fig.  4  Geocentric distance pro¯les

    图  5  推力加速度变化曲线

    Fig.  5  Thrust acceleration pro¯les

    表  1  输入状态参数

    Table  1  Input boundary parameters

    参数aei$\omega $$\Omega $f
    初始状态7178.1km070±20±
    末端状态9378.1km0.0190±180±
    下载: 导出CSV

    表  2  q取不同值时的仿真结果

    Table  2  Results with different q

    q${{\vartriangle }_{v}}$(DU=TU)Tmax(DU=TU2)${{\vartriangle }_{t}}$(s)
    50.24530.014152.5338
    70.22210.01404.8387
    90.20160.01400.4418
    130.19690.01380.4245
    170.18620.01390.3718
    210.21010.014013.2845
    250.22690.0140193.4338
    270.29720.0141239.1416
    下载: 导出CSV

    表  3  $DP$取不同值时的仿真结果

    Table  3  Results with different $DP$

    $DP\cdot 2\pi /{{\theta }_{f}}$${{\vartriangle }_{v}}$(DU=TU)Tmax(DU=TU2)${{\vartriangle }_{t}}$(s)
    60.20880.014019.6138
    100.20110.01390.5181
    200.20100.01403.1638
    300.20120.01383.6007
    400.20050.014010.7402
    600.20030.014015.2663
    800.20020.014036.1296
    900.20020.014047.4839
    下载: 导出CSV

    表  4  ${n_r},{n_\theta }$取不同值时的仿真结果

    Table  4  Results with different ${n_r}$ and ${n_\theta }$

    nr=${{n}_{\theta }}$${{\vartriangle }_{v}}$(DU=TU)Tmax(DU=TU2)${{\vartriangle }_{t}}$(s)
    30.27730.014039.1008
    41.96710.01403.6494
    50.21170.01396.0813
    60.20130.01363.8057
    80.19740.013225.8237
    100.19020.013245.5559
    下载: 导出CSV

    表  5  三种方法计算结果比较

    Table  5  Comparison of the results using three methods

    方法${{\vartriangle }_{v}}$(DU=TU)Tmax(DU=TU2)${{\vartriangle }_{t}}$(s)
    本文的方法0.18940.01390.4130
    逆多项式法0.20930.01860.1341
    高斯伪谱法0.18490.014061.901
    下载: 导出CSV
  • [1] Laipert F E,Longuski J M.Low-thrust trajectories for human missions to Ceres.Acta Astronautica,2014,95:124-132 doi: 10.1016/j.actaastro.2013.11.003
    [2] Graham K F,Rao A V.Minimum-time trajectory optimization of multiple revolution low-thrust earth-orbit transfers.Journal of Spacecraft and Rockets,2015,52(3):711-727 doi: 10.2514/1.A33187
    [3] Sun C,Yuan J P,Fang Q.Continuous low thrust trajectory optimization for preliminary design.Proceedings of the Institution of Mechanical Engineers.Part G:Journal of Aerospace Engineering,2016,230(5):921-933
    [4] Topputo F,Zhang C.Survey of direct transcription for low-thrust space trajectory optimization with applications.Abstract and Applied Analysis,2014,2014:851720,DOI: 10.1155/2014/851720
    [5] Petropoulos A E,Longuski J M,Vinh N X.Shape-based analytic representations of low-thrust trajectories for gravity-assist applications.In:Proceedings of the 2000 Advances in Astronautical Sciences.Girdwood,USA:AAS,2000.563-581
    [6] Petropoulos A E,Longuski J M.Shape-based algorithm for the automated design of low-thrust,gravity assist trajectories.Journal of Spacecraft and Rockets,2004,41(5):787-796 doi: 10.2514/1.13095
    [7] Izzo D.Lambert's problem for exponential sinusoids.Journal of Guidance,Control,and Dynamics,2006,29(5):1242-1245 doi: 10.2514/1.21796
    [8] Wall B J,Conway B A.Shape-based approach to low-thrust rendezvous trajectory design.Journal of Guidance,Control,and Dynamics,2009,32(1):95-101 doi: 10.2514/1.36848
    [9] Wall B J.Shape-based approximation method for low-thrust trajectory optimization.In:Proceedings of the 2008 AIAA/AAS Astrodynamics Specialist Conference and Exhibit.Honolulu,Hawaii:AIAA,2008.
    [10] Taheri E,Abdelkhalik O.Shape based approximation of constrained low-thrust space trajectories using Fourier series.Journal of Spacecraft and Rockets,2012,49(3):535-546 http://cn.bing.com/academic/profile?id=2154522750&encoded=0&v=paper_preview&mkt=zh-cn
    [11] Taheri E,Abdelkhalik O.Initial three-dimensional low-thrust trajectory design.Advances in Space Research,2016,57(3):889-903 doi: 10.1016/j.asr.2015.11.034
    [12] Gondelach D J,Noomen R.Hodographic-shaping method for low-thrust interplanetary trajectory design.Journal of Spacecraft and Rockets,2015,52(3):728-738 doi: 10.2514/1.A32991
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  1485
  • HTML全文浏览量:  188
  • PDF下载量:  850
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-21
  • 录用日期:  2016-04-28
  • 刊出日期:  2016-11-01

目录

    /

    返回文章
    返回