2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于卷积神经网络的T波形态分类

刘明 李国军 郝华青 侯增广 刘秀玲

刘明, 李国军, 郝华青, 侯增广, 刘秀玲. 基于卷积神经网络的T波形态分类. 自动化学报, 2016, 42(9): 1339-1346. doi: 10.16383/j.aas.2016.c150817
引用本文: 刘明, 李国军, 郝华青, 侯增广, 刘秀玲. 基于卷积神经网络的T波形态分类. 自动化学报, 2016, 42(9): 1339-1346. doi: 10.16383/j.aas.2016.c150817
LIU Ming, LI Guo-Jun, HAO Hua-Qing, HOU Zeng-Guang, LIU Xiu-Ling. T Wave Shape Classification Based on Convolutional Neural Network. ACTA AUTOMATICA SINICA, 2016, 42(9): 1339-1346. doi: 10.16383/j.aas.2016.c150817
Citation: LIU Ming, LI Guo-Jun, HAO Hua-Qing, HOU Zeng-Guang, LIU Xiu-Ling. T Wave Shape Classification Based on Convolutional Neural Network. ACTA AUTOMATICA SINICA, 2016, 42(9): 1339-1346. doi: 10.16383/j.aas.2016.c150817

基于卷积神经网络的T波形态分类

doi: 10.16383/j.aas.2016.c150817
基金项目: 

国家自然科学基金 61473112

河北省杰出青年基金 F2016201186

河北省自然科学基金 F2015201112

河北省高等学校科学技术研究项目 ZD2015067

详细信息
    作者简介:

    刘明 河北大学副教授.主要研究方向为模式识别,心电信号处理.E-mail:liuming@hbu.cn

    李国军 河北大学硕士研究生.主要研究方向为模式识别,心电信号处理.E-mail:l631440866@163.com

    郝华青 河北大学硕士研究生.主要研究方向为模式识别,心电信号处理.E-mail:huaqingdeyouxiang@163.com

    侯增广 中国科学院自动化研究所研究员,复杂系统管理与控制国家重点实验室副主任.主要研究方向为嵌入式系统软硬件开发,机器人控制,智能控制理论与方法,医学和健康自动化领域的康复与手术机器人.E-mail:zengguang.hou@ia.ac.cn

    通讯作者:

    刘秀玲 河北大学电子信息工程学院教授.主要研究方向为心血管系统智能分析.本文通信作者.E-mail:liuxiuling121@hotmail.com

T Wave Shape Classification Based on Convolutional Neural Network

Funds: 

National Natural Science Foundation of China 61473112

Foundation for Distinguished Young Scholars of Hebei Province F2016201186

Natural Science Foundation of Hebei Province F2015201112

Science and Technology Research Project for Universities and Colleges in Hebei Province ZD2015067

More Information
    Author Bio:

    Associate professor at Hebei University. His research interest covers pattern recognition and ECG signal processing.

    Master student at Hebei University. His research interest covers pattern recognition and ECG signal processing.

    Master student at Hebei University. Her research interest covers pattern recognition and ECG signal processing.

    Professor at the Institute of Automation, Chinese Academy of Sciences, and deputy director of the State Key Laboratory of Management and Control for Complex Systems. His research interest covers embedded software and hardware development, robotics and intelligent control with applications to rehabilitation and surgical robots for medical and health automation.

    Corresponding author: LIU Xiu-Ling Professor at the College of Electronic and Information Engineering, Hebei University. Her main research interest is intelligent analysis of cardiovascular system. Corresponding author of this paper.
  • 摘要: T波形态分类有助于诊断心肌缺血、急性心包炎和心脏猝死等疾病,是心电图远程监控中一个重要的研究课题.传统的T波分类算法依赖于T波检测,在准确定位T波的关键点之后再提取T波特征,完成分类.但是由于T波位置可能发生一定程度偏移,T波的形态多变且受到多种噪声的干扰,T波检测是一个难题.为了解决上述问题,本文提出基于卷积神经网络的T波分类算法:首先根据QRS波群位置及医学统计规律确定一个T波候选段,然后采用卷积神经网络直接完成T波分类.由于卷积神经网络有稀疏连接、权值共享的特性,能够通过训练自动获取T波特征,并且其特征对微小平移具备不变性且对噪声不敏感,从而能够有效解决T波形态分类问题.最后在MIT-BIH QT心电数据库上对本文方法进行测试,实验结果表明,本文方法可以在T波起始点未确定的情况下,能够识别单峰直立、单峰倒置、低平、负正双向、正负双向五类T 波形态,正确率达到了99.1%.
  • 图  1  T波形态分类算法流程图

    Fig.  1  Flow chart of the T wave shape classification

    图  2  R波波峰检测示意图

    Fig.  2  Illustration of the R wave peak detection

    图  3  T波形态示例

    Fig.  3  Illustration of the shapes of the T wave

    图  4  心电信号示意图

    Fig.  4  Illustration of the electrocardiograph (ECG) signal

    图  5  T波截取窗口示意图

    Fig.  5  Illustration of the window for T wave interception

    图  6  稀疏链接示意图

    Fig.  6  Illustration of the sparse connection

    图  7  权值共享示意图

    Fig.  7  Illustration of the weight share

    图  8  T波分类的卷积神经网络结构

    Fig.  8  Architecture of the convolution neural network for T wave classification

    图  9  参数优化示意图

    Fig.  9  Diagram of the parameter optimization

    表  1  分类结果

    Table  1  Classification results

    测试分类 正常 正负 负正 倒置 低平
    正常 993 2 1 0 4
    正负 2 991 0 1 6
    负正 3 0 792 2 3
    倒置 0 1 3 794 2
    低平 3 1 1 1 394
    下载: 导出CSV

    表  2  不同训练次数下的识别率(%)

    Table  2  Recognition rates under different training times (%)

    训练次数 1 5 10 20
    训练集识别率 87.4 95.3 99.4 99.4
    测试集识别率 85.7 91.4 99.1 99.1
    下载: 导出CSV

    表  3  卷积核个数选择

    Table  3  Choice of the number of the convolution kernel

    卷积核个数 2 3 5 8 11
    训练样本的时间(s) 22.95 39.8 61.8 121.3 144.7
    测试集识别率(%) 95.7 99.1 99.1 99.1 99.1
    下载: 导出CSV

    表  4  与经典BP神经网络对比(%)

    Table  4  Comparison with the classical BP neural network (%)

    CNN BP
    99.1 96.7
    下载: 导出CSV

    表  5  与传统T波分类方法的对比(%)

    Table  5  Comparison with traditional T wave classification methods (%)

    T波分类方法 准确率
    T波候选段+卷积神经网络多形态分类识别 99.1
    膜极值定位T波+SVM单形态分类识别 98.2
    QT特征提取+决策树、逻辑回归方法 92.54
    下载: 导出CSV
  • [1] 夏云龙, 杨延宗. T波形成的心电生理机制及其争议. 心血管病学进展, 2010, 31(4): 497-499 http://www.cnki.com.cn/Article/CJFDTOTAL-XXGB201004003.htm

    Xia Yun-Long, Yang Yan-Zong. Controversial in mechanisms of genesis of T wave. Advances in Cardiovascular Diseases, 2010, 31(4): 497-499 http://www.cnki.com.cn/Article/CJFDTOTAL-XXGB201004003.htm
    [2] 钱敏. 心电图T波改变的诊断与临床意义. 中国疗养医学, 2014, 23(8): 684-686 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGLX201408011.htm

    Qian Min. The diagnosis and clinical significance of T wave changes in electrocardiogram. Chinese Journal of Convalescent Medicine, 2014, 23(8): 684-686 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGLX201408011.htm
    [3] Kania M, Fereniec M, Maniewski R. Evaluation of T-wave morphology dispersion in high-resolution ECG for risk stratification of sudden cardiac death. In: Proceedings of the 2012 Computing in Cardiology. Krakow: IEEE, 2012. 785-788
    [4] Vila J, Gang Y, Presedo J, Fernandez-Delgado M, Barro S, Malik M. A mathematical model for the T-wave pattern classification. In: Proceedings of the 1998 Computers in Cardiology. Cleveland, OH: IEEE, 1998. 421-424
    [5] 王云鹤, 钱梦瑶, 刘定宇, 饶妮妮. 心电信号多形态T波检测方法研究. 航天医学与医学工程, 2013, 26(4): 295-298 http://www.cnki.com.cn/Article/CJFDTOTAL-HYXB201304009.htm

    Wang Yun-He, Qian Meng-Yao, Liu Ding-Yu, Rao Ni-Ni. Study on detection method of T waves with different morphologies in electrocardiogram. Space Medicine and Medical Engineering, 2013, 26(4): 295-298 http://www.cnki.com.cn/Article/CJFDTOTAL-HYXB201304009.htm
    [6] Hadjem M, Nait-Abdesselam F. An ECG T-wave anomalies detection using a lightweight classification model for wireless body sensors. In: Proceedings of the 2015 IEEE International Conference on Communication Workshop. London, UK: IEEE, 2015. 278-283
    [7] Liu Y J, Tang L, Tong S C, Chen C L P. Adaptive NN controller design for a class of nonlinear MIMO discrete-time systems. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(5): 1007-1018 doi: 10.1109/TNNLS.2014.2330336
    [8] Liu Y J, Gao Y, Tong S C, Chen C L P. A unified approach to adaptive neural control for nonlinear discrete-time systems with nonlinear dead-zone input. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(1): 139-150 doi: 10.1109/TNNLS.2015.2471262
    [9] Zhang H G, Wang Z S, Liu D R. A comprehensive review of stability analysis of continuous-time recurrent neural networks. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(7): 1229-1262 doi: 10.1109/TNNLS.2014.2317880
    [10] McDonnell M D, Vladusich T. Enhanced image classification with a fast-learning shallow convolutional neural network. In: Proceedings of the 2015 International Joint Conference on Neural Networks. Killarney, Ireland: IEEE, 2015. 1-7
    [11] Kalchbrenner N, Grefenstette E, Blunsom P. A convolutional neural network for modelling sentences. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Baltimore, USA: Association for Computational Linguistics, 2014. 655-665
    [12] Dosovitskiy A, Springenberg J T, Brox T. Learning to generate chairs with convolutional neural networks. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, US: IEEE, 2015. 1538-1546
    [13] Liu X L, Yang J L, Zhu X Y, Zhou S P, Wang H R, Zhang H. A novel R-peak detection method combining energy and wavelet transform in electrocardiogram signal. Biomedical Engineering: Applications, Basis and Communications, 2014, 26(1): 1-9 http://cn.bing.com/academic/profile?id=2046643603&encoded=0&v=paper_preview&mkt=zh-cn
    [14] 张世杰. 心电信号中T波交替的检测方法研究 [硕士学位论文], 武汉理工大学, 中国, 2009.

    Zhang Shi-Jie. Detection Method Research for T Wave Alternans in Electrocardiogram [Master dissertation], Wuhan University of Technology, China, 2009.
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  2283
  • HTML全文浏览量:  598
  • PDF下载量:  1620
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-08
  • 录用日期:  2016-02-27
  • 刊出日期:  2016-09-01

目录

    /

    返回文章
    返回