2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应稀疏变换的指纹图像压缩

马名浪 何小海 滕奇志 陈洪刚 卿粼波

马名浪, 何小海, 滕奇志, 陈洪刚, 卿粼波. 基于自适应稀疏变换的指纹图像压缩. 自动化学报, 2016, 42(8): 1274-1284. doi: 10.16383/j.aas.2016.c150815
引用本文: 马名浪, 何小海, 滕奇志, 陈洪刚, 卿粼波. 基于自适应稀疏变换的指纹图像压缩. 自动化学报, 2016, 42(8): 1274-1284. doi: 10.16383/j.aas.2016.c150815
MA Ming-Lang, HE Xiao-Hai, TENG Qi-Zhi, CHEN Hong-Gang, QING Lin-Bo. Fingerprint Image Compression Algorithm via Adaptive Sparse Transformation. ACTA AUTOMATICA SINICA, 2016, 42(8): 1274-1284. doi: 10.16383/j.aas.2016.c150815
Citation: MA Ming-Lang, HE Xiao-Hai, TENG Qi-Zhi, CHEN Hong-Gang, QING Lin-Bo. Fingerprint Image Compression Algorithm via Adaptive Sparse Transformation. ACTA AUTOMATICA SINICA, 2016, 42(8): 1274-1284. doi: 10.16383/j.aas.2016.c150815

基于自适应稀疏变换的指纹图像压缩

doi: 10.16383/j.aas.2016.c150815
基金项目: 

国家自然科学基金 61471248

四川省教育厅2014研究生教育改革创新项目 2014-Education-034

四川省科技计划项目 2015JY0189

详细信息
    作者简介:

    马名浪 四川大学电子信息学院硕士研究生.主要研究方向为图像超分辨率和图像压缩.E-mail:hellomaminglang@163.com;

    滕奇志 博士,四川大学电子信息学院教授.主要研究方向为图像处理,图像传输,模式识别和软件工程.E-mail:qzteng@scu.edu.cn;

    陈洪刚 四川大学电子信息学院博士研究生.主要研究方向为图像压缩,图像超分辨率,图像复原和压缩感知.E-mail:honggangchen.scu@gmail.com;

    卿粼波 博士,四川大学电子信息学院副教授.主要研究方向为图像压缩,视频编码与传输,信息理论.E-mail:_lb@scu.edu.cn

    通讯作者:

    何小海 博士,四川大学电子信息学院教授.主要研究方向为图像处理,模式识别和图像通信.本文通信作者.E-mail:hxh@scu.edu.cn

Fingerprint Image Compression Algorithm via Adaptive Sparse Transformation

Funds: 

National Natural Science Foundation of China 61471248

2014 Postgraduate Education Innovation Project of Sichuan Education Department 2014-Education-034

Technology Project of Sichuan Province 2015JY0189

More Information
    Author Bio:

    Master student at the College of Electronics and Information Engineering, Sichuan University. His research interest covers image super resolution and image compression.E-mail:

    Ph. D., professor at the College of Electronics and Information Engineering, Sichuan University. Her research interest covers image processing, image communication, pattern recognition, and software engineering.E-mail:

    Ph. D. candidate at the College of Electronics and Information Engineering, Sichuan University. His research interest covers image compression image super resolution, image restoration, and compressed sensing.E-mail:

    Ph. D., associate professor at the College of Electronics and Information Engineering, Sichuan University. His research interest covers image processing, video coding and transmission, and information theory.E-mail:

    Corresponding author: HE Xiao-Hai Ph. D., professor at the College of Electronics and Information Engineering, Sichuan University. His research interest covers image processing, pattern recognition, and image communication.
  • 摘要: 随着指纹识别技术的广泛应用,大量指纹图像需要被收集和存储.在指纹识别系统中,对于大容量的指纹数据库,指纹图像必须经过压缩后存储以减少存储空间,本文提出了基于自适应稀疏变换的指纹图像压缩算法.该算法在离线状态下提取指纹图像特征训练超完备字典;在编码过程中,首先利用差分预测编码和稀疏变换将待压缩指纹图像转换到稀疏域,然后对直流系数和稀疏表达系数进行量化和熵编码,从而实现图像信息的压缩.实验表明,在中低码率段,本文算法相比于JPEG、JPEG2000和WSQ等主流压缩算法表现出更优越的率失真性能;在相同码率时,本文算法生成的压缩图像的主观视觉效果更好,指纹识别率更高.
  • 图  1  本文提出的基于自适应稀疏变换的指纹图像压缩算法框架

    Fig.  1  The framework of the proposed fingerprint image compression algorithm via adaptive sparse transformation

    图  2  本文算法低频预测图像(a)与K-SVD-SR 算法低频图像 (b)块效应对比

    Fig.  2  The comparison of low-frequency predicted image between the proposed algorithm (a) and the K-SVD-SR algorithm(b)

    图  3  块间像素预测对最终编解码效果的影响

    Fig.  3  The effect of inter-block pixel prediction on the final codec

    图  4  灰度平均值的三种编码方向模式

    Fig.  4  The three coding direction modes for grayscale average

    图  5  分块尺寸分别为6× 6、7× 7、8× 8、9×9的率失真性能比较

    Fig.  5  The comparison of rate distortion performance between the blocks with the size of 6× 6,7× 7,8× 8,and 9× 9

    图  6  (a)~(d) 分别表示测试图像库中的数据库2~5在四种压缩算法下的平均率失真性能

    Fig.  6  The (a),(b),(c),(d) respectively denotes the average rate distortion performance of the test image library Database2,Database3,Database4,and Database5 at 4 compression algorithms

    图  7  从左至右分别表示原始图像和码率同为0.1 bpp的JPEG、JPEG2000、K-SVD-SR和本文算法的解码图像

    Fig.  7  From left to right respectively represents the original image and the decoded image of JPEG,JPEG2000,K-SVD-SR,and the proposed algorithm at the same rate as 0.1 bpp

    图  8  稀疏度自适应选择与固定稀疏度L=2、6、10、14对比

    Fig.  8  The contrast of the adaptive sparsity and the fixed sparsity of L=2,6,10,14

    图  9  MP与QOMP算法对比

    Fig.  9  The contrast of MP algorithm and QOMP algorithm

    图  10  两种量化模式对图像压缩性能的影响比较

    Fig.  10  The comparison of the impact on image compression performance between the two quantization modes

    图  11  “索引-权值”编码模式与“原子个数-索引-权值”编码模式对比

    Fig.  11  The contrast of the "index-weight" encoding mode and the "number of atoms-index-weight" encoding mode

    图  12  基于AGR的图像解码与K-SVD-SR的 直接解码对比

    Fig.  12  The contrast of the image decoding based on AGR and the direct decoding of K-SVD-SR

    图  13  测试图像库数据库2在四种压缩算法下的\\图像的平均特征匹配率

    Fig.  13  The average image feature matching rate of the test image library Database 2 at 4 compression algorithms

    表  1  四种压缩算法的时间复杂度比较 (s)

    Table  1  The comparison of time complexity about 4 compression algorithms (s)

    码率 (bpp) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
    JPEG0.160.160.160.160.170.170.170.170.17
    JPEG20000.080.080.080.080.070.080.080.080.08
    K-SVD-SR1.261.742.202.643.193.614.134.494.89
    本文算法2.132.803.262.884.534.955.835.766.84
    下载: 导出CSV
  • [1] Pennebaker W B, Mitchell J L. JPEG:Still Image Data Compression Standard. US:Springer, 1993. http://cn.bing.com/academic/profile?id=1540900967&encoded=0&v=paper_preview&mkt=zh-cn
    [2] Marcellin M W, Gormish M J, Bilgin A, Boliek M P. An overview of JPEG-2000. In:Proceedings of the 2000 Data Compression Conference. Snowbird, UT:IEEE, 2000.523-541
    [3] Bradley J N, Brislawn C M, Hopper T. FBI wavelet/scalar quantization standard for gray-scale fingerprint image compression. In:Proceedings of the SPIE 1961, Visual Information Processing Ⅱ. Orlando, FL:SPIE, 1993.293-304
    [4] Skodras A, Christopoulos C, Ebrahimi T. The JPEG 2000 still image compression standard. IEEE Signal Processing Magazine, 2001, 18(5):36-58 doi: 10.1109/79.952804
    [5] Shao G, Wu Y, Yong A, Liu X, Guo T. Fingerprint compression based on sparse representation. IEEE Transactions on Image Processing, 2014, 23(2):489-501 doi: 10.1109/TIP.2013.2287996
    [6] Olshausen B A, Field D J. Sparse coding with an overcomplete basis set:a strategy employed by V1? Vision Research, 1997, 37(23):3311-3325 doi: 10.1016/S0042-6989(97)00169-7
    [7] Emmanuel B, Mu'Azu M, Sani S, Garba S. A review of wavelet-based image processing methods for fingerprint compression in biometric application. British Journal of Mathematics and Computer Science, 2014, 4(19):2781-2798 doi: 10.9734/BJMCS
    [8] Qian C, Xu Z. Robust visual tracking via sparse representation under subclass discriminant constraint. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(7):1293-1307 doi: 10.1109/TCSVT.2015.2424091
    [9] Sun B, Liu Z, Sun Y, Su F, Cao L, Zhang H. Multiple objects tracking and identification based on sparse representation in surveillance video. In:Proceedings of the 2015 IEEE International Conference on Multimedia Big Data (BigMM). Beijing, China:IEEE, 2015.268-271
    [10] Cheng M, Wang C, Li J. Single-image super-resolution in RGB space via group sparse representation. Iet Image Processing, 2015, 9(6):461-467 doi: 10.1049/iet-ipr.2014.0313
    [11] Tropp J A. Greed is good:algorithmic results for sparse approximation. IEEE Transactions on Information Theory, 2004, 50(10):2231-2242 doi: 10.1109/TIT.2004.834793
    [12] Mallat S G, Zhang Z F. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12):3397-3415 doi: 10.1109/78.258082
    [13] Pati Y C, Rezaiifar R, Krishnaprasad P S. Orthogonal matching pursuit:recursive function approximation with applications to wavelet decomposition. In:Proceedings of the 1993 Conference Record of the 27th Asilomar Conference on Signals, Systems, and Computers. Pacific Grove, CA:IEEE, 1993.40-44 http://cn.bing.com/academic/profile?id=185716565&encoded=0&v=paper_preview&mkt=zh-cn
    [14] Gharavi-Alkhansari M, Huang T S. A fast orthogonal matching pursuit algorithm. In:Proceedings of the 1998 IEEE International Conference on Acoustics, Speech, and Signal Processing. Seattle, WA:IEEE, 1998.1389-1392 http://dl.acm.org/citation.cfm?id=1892575
    [15] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 1998, 20(1):33-61 doi: 10.1137/S1064827596304010
    [16] Zhu J Y, Wang Z Y, Zhong R, Qu S M. Dictionary based surveillance image compression. Journal of Visual Communication and Image Representation, 2015, 31:225-230 doi: 10.1016/j.jvcir.2015.07.002
    [17] Setiawan A D, Suksmono A B, Mengko T L R, Gunawan H. Low-bitrate medical image compression. In:Proceedings of the ACA2011 IAPR Conference on Machine Vision Applications. Nara, Japan, 2011.544-547
    [18] Xu J, Pi Y, Ming R. SAR image compression based on sparse representation. In:Proceedings of the 11th International Radar Symposium (IRS). Vilnius, Lithuania:IEEE, 2010.1-4
    [19] Zhan X, Zhang R, Yin D, Huo C. SAR image compression using multiscale dictionary learning and sparse representation. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5):1090-1094 doi: 10.1109/LGRS.2012.2230394
    [20] Aharon M, Elad M, Bruckstein A. K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 2006, 54(11):4311-4322 doi: 10.1109/TSP.2006.881199
    [21] Anurakphanawan N, Lamsrichan P. Fingerprint recognition performance with WSQ, CAWDR, and JPEG2000 compression. In:Proceedings of the 6th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES). Hua-Hin, Thailand:IEEE, 2015.1-6
    [22] Fingerprint images[Online], available:http://pan.baidu.com/s/1i3KxQZV,November27,2015
    [23] Abraham J, Kwan P, Gao J B. Fingerprint matching using a hybrid shape and orientation descriptor. State of the Art in Biometrics. New York:InTech, 2011.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  2490
  • HTML全文浏览量:  456
  • PDF下载量:  746
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-07
  • 录用日期:  2016-03-10
  • 刊出日期:  2016-08-01

目录

    /

    返回文章
    返回