-
摘要: 随着指纹识别技术的广泛应用,大量指纹图像需要被收集和存储.在指纹识别系统中,对于大容量的指纹数据库,指纹图像必须经过压缩后存储以减少存储空间,本文提出了基于自适应稀疏变换的指纹图像压缩算法.该算法在离线状态下提取指纹图像特征训练超完备字典;在编码过程中,首先利用差分预测编码和稀疏变换将待压缩指纹图像转换到稀疏域,然后对直流系数和稀疏表达系数进行量化和熵编码,从而实现图像信息的压缩.实验表明,在中低码率段,本文算法相比于JPEG、JPEG2000和WSQ等主流压缩算法表现出更优越的率失真性能;在相同码率时,本文算法生成的压缩图像的主观视觉效果更好,指纹识别率更高.Abstract: With the wide application of fingerprint identification technology, a large number of fingerprint images need to be collected and stored. In fingerprint identification, as for the fingerprint database with large-capacity, the fingerprint images must be stored after compression to reduce the storage space. In this paper, a fingerprint image compression algorithm based on adaptive sparse transformation is proposed. The feature of the fingerprint image is extracted offline to train the over-complete dictionary. In the encoding process, the fingerprint image to be compressed is converted to sparse domain by utilizing the differential predictive coding and sparse transformation in the first place; after that the DC coefficients and the sparse coefficients are quantized and entropy coded to achieve the compression of the image information. Experimental results show that the proposed algorithm outperforms the mainstream compression methods, such as JPEG, JPEG2000 and WSQ, in terms of ratio-distortion performance of decoded fingerprint image, especially at low to medium bit rates. At the same bit rate, the compression image generated by the proposed algorithm exhibits better subjective visual effect and higher fingerprint recognition rate.
-
表 1 四种压缩算法的时间复杂度比较 (s)
Table 1 The comparison of time complexity about 4 compression algorithms (s)
码率 (bpp) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 JPEG 0.16 0.16 0.16 0.16 0.17 0.17 0.17 0.17 0.17 JPEG2000 0.08 0.08 0.08 0.08 0.07 0.08 0.08 0.08 0.08 K-SVD-SR 1.26 1.74 2.20 2.64 3.19 3.61 4.13 4.49 4.89 本文算法 2.13 2.80 3.26 2.88 4.53 4.95 5.83 5.76 6.84 -
[1] Pennebaker W B, Mitchell J L. JPEG:Still Image Data Compression Standard. US:Springer, 1993. http://cn.bing.com/academic/profile?id=1540900967&encoded=0&v=paper_preview&mkt=zh-cn [2] Marcellin M W, Gormish M J, Bilgin A, Boliek M P. An overview of JPEG-2000. In:Proceedings of the 2000 Data Compression Conference. Snowbird, UT:IEEE, 2000.523-541 [3] Bradley J N, Brislawn C M, Hopper T. FBI wavelet/scalar quantization standard for gray-scale fingerprint image compression. In:Proceedings of the SPIE 1961, Visual Information Processing Ⅱ. Orlando, FL:SPIE, 1993.293-304 [4] Skodras A, Christopoulos C, Ebrahimi T. The JPEG 2000 still image compression standard. IEEE Signal Processing Magazine, 2001, 18(5):36-58 doi: 10.1109/79.952804 [5] Shao G, Wu Y, Yong A, Liu X, Guo T. Fingerprint compression based on sparse representation. IEEE Transactions on Image Processing, 2014, 23(2):489-501 doi: 10.1109/TIP.2013.2287996 [6] Olshausen B A, Field D J. Sparse coding with an overcomplete basis set:a strategy employed by V1? Vision Research, 1997, 37(23):3311-3325 doi: 10.1016/S0042-6989(97)00169-7 [7] Emmanuel B, Mu'Azu M, Sani S, Garba S. A review of wavelet-based image processing methods for fingerprint compression in biometric application. British Journal of Mathematics and Computer Science, 2014, 4(19):2781-2798 doi: 10.9734/BJMCS [8] Qian C, Xu Z. Robust visual tracking via sparse representation under subclass discriminant constraint. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(7):1293-1307 doi: 10.1109/TCSVT.2015.2424091 [9] Sun B, Liu Z, Sun Y, Su F, Cao L, Zhang H. Multiple objects tracking and identification based on sparse representation in surveillance video. In:Proceedings of the 2015 IEEE International Conference on Multimedia Big Data (BigMM). Beijing, China:IEEE, 2015.268-271 [10] Cheng M, Wang C, Li J. Single-image super-resolution in RGB space via group sparse representation. Iet Image Processing, 2015, 9(6):461-467 doi: 10.1049/iet-ipr.2014.0313 [11] Tropp J A. Greed is good:algorithmic results for sparse approximation. IEEE Transactions on Information Theory, 2004, 50(10):2231-2242 doi: 10.1109/TIT.2004.834793 [12] Mallat S G, Zhang Z F. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12):3397-3415 doi: 10.1109/78.258082 [13] Pati Y C, Rezaiifar R, Krishnaprasad P S. Orthogonal matching pursuit:recursive function approximation with applications to wavelet decomposition. In:Proceedings of the 1993 Conference Record of the 27th Asilomar Conference on Signals, Systems, and Computers. Pacific Grove, CA:IEEE, 1993.40-44 http://cn.bing.com/academic/profile?id=185716565&encoded=0&v=paper_preview&mkt=zh-cn [14] Gharavi-Alkhansari M, Huang T S. A fast orthogonal matching pursuit algorithm. In:Proceedings of the 1998 IEEE International Conference on Acoustics, Speech, and Signal Processing. Seattle, WA:IEEE, 1998.1389-1392 http://dl.acm.org/citation.cfm?id=1892575 [15] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 1998, 20(1):33-61 doi: 10.1137/S1064827596304010 [16] Zhu J Y, Wang Z Y, Zhong R, Qu S M. Dictionary based surveillance image compression. Journal of Visual Communication and Image Representation, 2015, 31:225-230 doi: 10.1016/j.jvcir.2015.07.002 [17] Setiawan A D, Suksmono A B, Mengko T L R, Gunawan H. Low-bitrate medical image compression. In:Proceedings of the ACA2011 IAPR Conference on Machine Vision Applications. Nara, Japan, 2011.544-547 [18] Xu J, Pi Y, Ming R. SAR image compression based on sparse representation. In:Proceedings of the 11th International Radar Symposium (IRS). Vilnius, Lithuania:IEEE, 2010.1-4 [19] Zhan X, Zhang R, Yin D, Huo C. SAR image compression using multiscale dictionary learning and sparse representation. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5):1090-1094 doi: 10.1109/LGRS.2012.2230394 [20] Aharon M, Elad M, Bruckstein A. K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 2006, 54(11):4311-4322 doi: 10.1109/TSP.2006.881199 [21] Anurakphanawan N, Lamsrichan P. Fingerprint recognition performance with WSQ, CAWDR, and JPEG2000 compression. In:Proceedings of the 6th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES). Hua-Hin, Thailand:IEEE, 2015.1-6 [22] Fingerprint images[Online], available:http://pan.baidu.com/s/1i3KxQZV,November27,2015 [23] Abraham J, Kwan P, Gao J B. Fingerprint matching using a hybrid shape and orientation descriptor. State of the Art in Biometrics. New York:InTech, 2011. 期刊类型引用(16)
1. 马亚杰,管理,姜斌,陈丽君,黄斌达,黄玉莹. 基于改进量子粒子群算法的柔性车间调度与预测性维护协同优化管控方法. 中国科学:技术科学. 2025(02): 295-308 . 百度学术
2. 马亚杰,姜斌,管理,陈丽君,黄斌达,陈智. 柔性车间多目标动态调度方法及其在航空制造中的应用综述(英文). Transactions of Nanjing University of Aeronautics and Astronautics. 2025(01): 1-24 . 百度学术
3. 温廷新,关婷誉. 考虑能耗和运输的有限缓冲区混合流水车间调度. 系统仿真学报. 2024(06): 1344-1358 . 百度学术
4. 刘璐,宋海草,姜天华,邓冠龙,巩庆涛. 基于改进生物迁徙算法的双资源柔性作业车间节能调度问题. 计算机集成制造系统. 2024(09): 3125-3141 . 百度学术
5. 赵慧娟,范明霞,姜盼松,温禄兴. 时间-能耗-质量权衡优化的柔性作业车间多目标调度研究. 计算机应用与软件. 2023(05): 67-75 . 百度学术
6. 李瑞,龚文引. 改进的基于分解的多目标进化算法求解双目标模糊柔性作业车间调度问题. 控制理论与应用. 2022(01): 31-40 . 百度学术
7. 彭来湖,王伟华,万昌江,万璐璐. 基于遗传模拟退火算法的柔性流水车间调度节能优化. 软件工程. 2022(11): 49-55 . 百度学术
8. 李新玲,张天昊. 基于精益生产节拍化的智能排程系统设计. 中国设备工程. 2022(24): 33-35 . 百度学术
9. 李俊青,杜宇,田杰,段培永,潘全科. 带运输资源约束柔性作业车间调度问题的人工蜂群算法. 电子学报. 2021(02): 324-330 . 百度学术
10. 蔡敏,王艳,纪志成. 基于多策略融合量子粒子群算法的MOFFJSP研究. 系统仿真学报. 2021(11): 2615-2626 . 百度学术
11. 李明,雷德明. 基于新型帝国竞争算法的高维多目标柔性作业车间调度. 控制理论与应用. 2019(06): 893-901 . 百度学术
12. 雷德明,操三强,李明. 求解约束优化问题的新型帝国竞争算法. 控制与决策. 2019(08): 1663-1671 . 百度学术
13. 张清勇,王皓冉,雷德明. 求解分布式并行机调度的新型帝国竞争算法. 华中科技大学学报(自然科学版). 2019(08): 86-91 . 百度学术
14. 操三强,雷德明. 一种新型约束多目标帝国竞争算法. 信息与控制. 2019(04): 437-444+451 . 百度学术
15. 杨冬婧,雷德明. 新型蛙跳算法求解总能耗约束FJSP. 中国机械工程. 2018(22): 2682-2689 . 百度学术
16. 王艳红,于宁,蔡明,邢大伟. 动态制造系统生产计划与调度协同优化. 中国机械工程. 2018(22): 2767-2771 . 百度学术
其他类型引用(40)
-