2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于维诺图和二分图的水面移动基站路径规划方法

夏娜 束强 赵青 伊君

夏娜, 束强, 赵青, 伊君. 基于维诺图和二分图的水面移动基站路径规划方法. 自动化学报, 2016, 42(8): 1185-1197. doi: 10.16383/j.aas.2016.c150794
引用本文: 夏娜, 束强, 赵青, 伊君. 基于维诺图和二分图的水面移动基站路径规划方法. 自动化学报, 2016, 42(8): 1185-1197. doi: 10.16383/j.aas.2016.c150794
XIA Na, SHU Qiang, ZHAO Qing, YI Jun. A Path Planning Method for Water Surface Mobile Sink Based on Voronoi Diagram and Bipartite Graph. ACTA AUTOMATICA SINICA, 2016, 42(8): 1185-1197. doi: 10.16383/j.aas.2016.c150794
Citation: XIA Na, SHU Qiang, ZHAO Qing, YI Jun. A Path Planning Method for Water Surface Mobile Sink Based on Voronoi Diagram and Bipartite Graph. ACTA AUTOMATICA SINICA, 2016, 42(8): 1185-1197. doi: 10.16383/j.aas.2016.c150794

基于维诺图和二分图的水面移动基站路径规划方法

doi: 10.16383/j.aas.2016.c150794
基金项目: 

安徽省杰出青年科学基金 1408085J05

教育部新世纪优秀人才支持计划 NCET-13-0768

国家自然科学基金 61100211, 61003307

详细信息
    作者简介:

    束强 合肥工业大学计算机与信息学院硕士研究生. 主要研究方向为水下传感器网络. E-mail: supershuqiang@163.cn

    赵青 合肥工业大学计算机与信息学院硕士研究生. 主要研究方向为水下传感器网络. E-mail: zoqg1119@163.com

    伊君 合肥工业大学计算机与信息学院硕士研究生. 主要研究方向为水下传感器网络, 嵌入式系统. E-mail: junsnowdream@163.com

    通讯作者:

    夏娜 合肥工业大学计算机与信息学院教授. 主要研究方向为无线传感器网络, 导航信息处理, 计算智能及应用. E-mail: xiananawo@hfut.edu.cn

  • 中图分类号: 

A Path Planning Method for Water Surface Mobile Sink Based on Voronoi Diagram and Bipartite Graph

Funds: 

Science Fund for Distinguished Young Scholars of Anhui Province 1408085J05

Program for New Century Excellent Tal-ents in University of China NCET-13-0768

National Natural Science Foundation of China 61100211, 61003307

More Information
    Author Bio:

    SHU Qiang Master student at the School of Computer and Information, Hefei University of Technology. His re-search interest covers underwater sen-sor networks

    ZHAO Qing Master student at the School of Computer and Information, Hefei University of Technology. Her re-search interest covers underwater sen-sor networks

    YI Jun Master student at the School of Computer and Information, Hefei University of Technology. His re-search interest covers underwater sen-sor networks and embedded system

    Corresponding author: XIA Na Professor at the School of Computer and Information, Hefei Uni-versity of Technology. His research in-terest covers wireless sensor networks, navigation informa-tion processing, and computational intelligence and appli-cation
  • 摘要: 水面传感器网络(Surface sensor networks,SSNs)具有节点稀疏布置的特点(节点间距离通常大于节点通信半径),因此难以通过节点间的多跳路由汇聚数据,目前主要采用移动基站(Mobile sink,MS)收集网络中的数据,其中移动基站的路径规划是一个关键问题.该文提出一种基于维诺图和二分图的水面移动基站路径规划方法,首先利用维诺图理论生成数据收集“候选点”;然后以二分图描述候选点对网络中传感器节点的支配关系,并基于支配集理论求解出“最小有效支配集”,即可以收集网络中所有节点数据的最小的候选点集合;最后针对最小有效支配集形成最优路径.大量实验结果表明该方法可以有效地规划出水面传感器网络中移动基站的路径,不仅可以完成全网数据收集任务,而且具有路径长度短、能量效率高和节点能耗均衡的优点.
  • 图  1  水面传感器网络示意图

    Fig.  1  Sketch map of surface sensor networks

    图  2  传感器节点能耗模型

    Fig.  2  Energy consumption model of sensor nodes

    图  3  基于传感器节点位置生成的维诺图

    Fig.  3  Voronoi diagram based on sensor nodes

    图  4  维诺图顶点与相邻传感器节点的几何关系

    Fig.  4  Geometric relationship between Voronoi vertexes and adjacent sensor nodes

    图  5  水面传感器网络构造为二分图

    Fig.  5  Bipartite graph constructed by surface sensor networks

    图  6  形成的移动基站优化路径

    Fig.  6  Optimized path for mobile sink

    图  7  实验1中本文方法规划出的最优路径

    Fig.  7  Optimal path planned by the method in this paper in Experiment 1

    图  8  实验2中本文方法规划出的最优路径

    Fig.  8  Optimal path planned by the method in this paper in Experiment 2

    图  9  实验3中本文方法规划出的最优路径

    Fig.  9  Optimal path planned by the method in this paper in Experiment 3

    图  10  实验1中三种方法所规划路径的长度比较

    Fig.  10  Comparison of path length by three methods in Experiment 1

    图  11  实验2中三种方法所规划路径的长度比较

    Fig.  11  Comparison of path length by three methods in Experiment 2

    图  12  实验3中三种方法所规划路径的长度比较

    Fig.  12  Comparison of path length by three methods in Experiment 3

    图  13  三种数据收集点的选取方法

    Fig.  13  Three methods of data collection points

    图  14  以维诺图顶点作为数据收集点的能耗分布

    Fig.  14  Energy consumption distribution at Voronoi vertexes

    图  15  以Delaunay三角形重心作为数据收集点的能耗分布

    Fig.  15  Energy consumption distribution at Delaunay triangle´s center

    图  16  以Delaunay三角形内随机点作为数据\\收集点的能耗分布

    Fig.  16  Energy consumption distribution at Delaunay triangle´s random points

    图  17  本文方法功能和优点逻辑框图

    Fig.  17  Function and advantages of this paper

    表  1  传感器节点与维诺图顶点间的支配关系

    Table  1  Dominating relationship between sensor nodes and Voronoi vertexes

    节点 顶点 节点 顶点
    s1 v7 ,v10 s2 v6 ,v7 ,v8
    s3 v1 ,v10 ,v11 s4 v7 ,v8 ,v9 ,v10 ,v11
    s5 v1 ,v2 s6 v3 ,v6
    s7 v3 ,v4 ,v5 s8 v1 ,v2 ,v4 ,v5 ,v9 ,v11
    s9 v3 ,v5 ,v6 ,v8 ,v9 s10 v2 ,v4
    下载: 导出CSV

    表  2  通信模型参数值

    Table  2  Parameter value of communication model

    参数
    节点发射或接收电路能耗系数es (nJ/bit) 50
    节点功率放大能耗系数εs (pJ/bit m2) 100
    移动基站广播数据量k1 (bit) 100
    传感器节点发送数据量k2 (bit) 10000
    基站航行速v (m/s) 5
    下载: 导出CSV

    表  3  分组实验所得结果

    Table  3  Grouping experiment results

    实验分组 路径长度(m) 网络总能耗(10-3J) 能量效率(J-1)
    (a) 16.559 5.076 7.181
    实验1 (b) 23.507 10.124 0.897
    (c) 29.993 15.174 0.164
    (a) 51.492 12.751 2.642 × 10-3
    实验2 (b) 69.923 20.302 4.159 × 10-5
    (c) 75.293 25.348 1.138 × 10-5
    (a) 409.118 27.05 1.077 × 10-34
    实验3 (b) 456.700 39.75 5.398 × 10-39
    (c) 532.231 52.525 1.124 × 10-45
    下载: 导出CSV

    表  4  三种方法所规划路径的长度比较

    Table  4  Comparison of path length by three methods

    实验分组 路径长度(m)
    本文方法 文献[12]方法 文献[16]方法
    (a) 16.559 57.196 32.658
    实验1 (b) 23.507 61.153 48.871
    (c) 29.993 68.927 53.276
    (a) 51.492 192.718 92.959
    实验2 (b) 69.923 219.657 113.224
    (c) 75.293 233.751 121.025
    (a) 409.118 1532.241 624.624
    实验3 (b) 456.700 1702.267 736.174
    (c) 532.231 1825.564 892.773
    下载: 导出CSV

    表  5  三种方法所规划路径的网络总能耗比较

    Table  5  Comparison of total energy consumption by three methods

    实验分组 网络总能耗(10-3 J)
    本文方法 文献[12]方法 文献[16]方法
    (a) 5.076 5.060 5.050
    实验1 (b) 10.124 10.120 10.100
    (c) 15.174 15.180 15.150
    (a) 12.751 12.650 12.625
    实验2 (b) 20.302 20.240 20.200
    (c) 25.348 25.300 25.250
    (a) 27.050 25.450 25.250
    实验3 (b) 39.750 38.175 37.875
    (c) 52.525 50.900 50.500
    下载: 导出CSV

    表  6  三种方法所规划路径的能量效率比较

    Table  6  Comparison of total energy efficiency by three methods

    实验分组 能量效率(J-1)
    本文方法 文献[12]方法 文献[16]方法
    (a) 7.181 2.127 × 10-3 0.288
    实验1 (b) 0.897 4.821 × 10-4 5.634 × 10-3
    (c) 0.164 6.789 × 10-5 1.556 × 10-3
    (a) 2.642 × 10-3 1.441 × 10-15 6.675 × 10-7
    实验2 (b) 4.159 × 10-5 4.117 × 10-18 7.247 × 10-9
    (c) 1.138 × 10-5 1.966 × 10-19 1.218 × 10-9
    (a) 1.077 × 10-34 0 2.206 × 10-53
    实验3 (b) 5.398 × 10-39 0 3.009 × 10-63
    (c) 1.124 × 10-45 0 5.642 × 10-77
    下载: 导出CSV

    表  7  实验1(a)中,传感器节点的能耗及方差值

    Table  7  Energy consumption and variance of sensor nodes in Experiment 1(a)

    实验1(a) 能耗(10-3J) 方差(10-12J2)
    s1 s2 s3 s4 s5 s6 s7 s8 s9 s10
    本文方法的维诺图顶点 0.5087 0.5070 0.5087 0.5087 0.5076 0.5070 0.5070 0.5070 0.5070 0.5076 5.076 0.543
    Delaunay三角形重心 0.5081 0.5062 0.5093 0.5083 0.5079 0.5073 0.5060 0.5079 0.5072 0.5071 5.075 0.879
    Delaunay三角形内随机点 0.5098 0.5097 0.5079 0.5058 0.5083 0.5051 0.5062 0.5089 0.5094 0.5071 5.078 2.198
    下载: 导出CSV
  • [1] Gkikopouli A, Nikolakopoulos G, Manesis S. A survey on underwater wireless sensor networks and applications. In:Proceedings of the 20th Mediterranean Conference on Control and Automation. Barcelona, Spain:IEEE, 2012.1147-1154 https://www.researchgate.net/publication/281716899_Multihops_Fitting_Approach_for_Node_Localization_in_Underwater_Wireless_Sensor_Networks
    [2] Davis A, Chang H. Underwater wireless sensor networks. In:Proceedings of the 2012 Oceans Conference. Virginia, USA:IEEE, 2012.1-5 http://eprints.qut.edu.au/view/types/conference=5Fpaper/2012.default.html
    [3] Tunca C, Isik S, Donmez M Y, Ersoy C. Distributed mobile sink routing for wireless sensor networks:a survey. IEEE Communications Surveys and Tutorials, 2014, 16(2):877-897 doi: 10.1109/SURV.2013.100113.00293
    [4] 罗旭, 柴利, 杨君. 无线传感器网络下静态水体中的近岸污染源定位. 自动化学报, 2014, 40(5):849-861 http://www.aas.net.cn/CN/abstract/abstract18353.shtml

    Luo Xu, Chai Li, Yang Jun. Offshore pollution source localization in static water using wireless sensor networks. Acta Automatica Sinica, 2014, 40(5):849-861 http://www.aas.net.cn/CN/abstract/abstract18353.shtml
    [5] Wang J, Yang X Q, Li B, Lee S Y, Jeon S K. A mobile sink based uneven clustering algorithm for wireless sensor networks. Journal of Internet Technology, 2013, 14(6):895-902 http://cn.bing.com/academic/profile?id=2261891850&encoded=0&v=paper_preview&mkt=zh-cn
    [6] Nizhamudong Y, Nakaya N, Hagihara Y, Koui Y. Performance evaluation of route cost for wireless sensor networks with a mobile sink. In:Proceedings of the 2011 SICE Annual Conference. Tokyo, Japan:IEEE, 2011.2029-2031
    [7] Liang W F, Schweitzer P, Xu Z C. Approximation algorithms for capacitated minimum forest problems in wireless sensor networks with a mobile sink. IEEE Transactions on Computers, 2013, 62(10):1932-1944 doi: 10.1109/TC.2012.124
    [8] Saad E M, Awadalla M H, Darwish R R. A data gathering algorithm for a mobile sink in large-scale sensor networks. In:Proceedings of the 4th International Conference on Wireless and Mobile Communications. Athens, Greece:IEEE, 2008.207-213
    [9] Liang W F, Luo J. Network lifetime maximization in sensor networks with multiple mobile sinks. In:Proceedings of the 36th Conference on Local Computer Networks. Bonn, Germany:IEEE, 2011.350-357 http://dl.acm.org/citation.cfm?id=2195216.2195437
    [10] Nagamalar T, Rangaswamy T R. Energy efficient cluster based approach for data collection in wireless sensor networks with multiple mobile sink. In:Proceedings of the 2015 International Conference on Industrial Instrumentation and Control. Pune, India:IEEE, 2015.348-353
    [11] Shah R C, Roy S, Jain S, Brunette W. Data MULEs:modeling and analysis of a three-tier architecture for sparse sensor networks. Ad Hoc Networks, 2003, 1(2-3):215-233 doi: 10.1016/S1570-8705(03)00003-9
    [12] Chatzigiannakis I, Kinalis A, Nikoletseas S. Efficient data propagation strategies in wireless sensor networks using a single mobile sink. Computer Communications, 2008, 31(5):896-914 doi: 10.1016/j.comcom.2007.12.011
    [13] Ma M, Yang Y Y. Data gathering in wireless sensor networks with mobile collectors. In:Proceedings of the 2008 IEEE International Symposium on Parallel and Distributed Processing. Miami, USA:IEEE, 2008.1-9 http://dsn.sagepub.com/content/10/9/698452.full
    [14] Luo J, Hubaux J P. Joint mobility and routing for lifetime elongation in wireless sensor networks. In:Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies. Miami, USA:IEEE, 2005.1735-1746
    [15] 石高涛, 廖明宏. 传感器网络中具有负载平衡的移动协助数据收集模式. 软件学报, 2007, 18(9):2235-2244 doi: 10.1360/jos182235

    Shi Gao-Tao, Liao Ming-Hong. Movement-assisted data gathering scheme with load-balancing for sensor networks. Journal of Software, 2007, 18(9):2235-2244 doi: 10.1360/jos182235
    [16] Zhu R B, Qin Y Y, Wang J Q. Energy-aware distributed intelligent data gathering algorithm in wireless sensor networks. International Journal of Distributed Sensor Networks, 2011, 2011:Article ID 235724 http://cn.bing.com/academic/profile?id=1998032303&encoded=0&v=paper_preview&mkt=zh-cn
    [17] Salarian H, Chin K W, Naghdy F. An energy-efficient mobile-sink path selection strategy for wireless sensor networks. IEEE Transactions on Vehicular Technology, 2014, 63(5):2407-2419 doi: 10.1109/TVT.2013.2291811
    [18] Heinzelman W R, Chandrakasan A, Balakrishnan H. Energy-efficient communication protocol for wireless microsensor networks. In:Proceedings of the 33rd Annual Hawaii International Conference on System Sciences. Hawaii, USA:IEEE, 2000. http://cn.bing.com/academic/profile?id=1966877298&encoded=0&v=paper_preview&mkt=zh-cn
    [19] Voronoi G M. Nouvelles applications des paramétres continus á la théorie des formes quadratiques deuxiéme memoire:recherches sur les parallélloédres primitifs. Journal Für Die Reine und Angewandte Mathematik, 1908, 1908(134):198-287 http://cn.bing.com/academic/profile?id=1520127302&encoded=0&v=paper_preview&mkt=zh-cn
    [20] Mirzargar M, Entezari A. Voronoi splines. IEEE Transactions on Signal Processing, 2010, 58(9):4572-4582 doi: 10.1109/TSP.2010.2051808
    [21] Garrido S, Moreno L, Blanco D, Jurewicz P P. Path planning for mobile robot navigation using Voronoi diagram and fast marching. International Journal of Robotics and Automation, 2011, 2(1):42-64 http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.ieee-000004058742
    [22] Ok K, Ansari S, Gallagher B, Sica W, Dellaert F, Stilman M. Path planning with uncertainty:Voronoi uncertainty fields. In:Proceedings of the 2013 IEEE International Conference on Robotics and Automation. Karlsruhe:IEEE, 2013.4596-4601 http://cn.bing.com/academic/profile?id=2368403481&encoded=0&v=paper_preview&mkt=zh-cn
    [23] 夏娜, 倪成春, 徐朝农, 丁胜, 郑榕. 逆向捕获时间差的Voronoi声源定位机制. 通信学报, 2013, 34(11):140-152 http://www.cnki.com.cn/Article/CJFDTOTAL-TXXB201311016.htm

    Xia Na, Ni Cheng-Chun, Xu Chao-Nong, Ding Sheng, Zheng Rong. Voronoi acoustic source localization mechanism based on counter captured time difference. Journal on Communications, 2013, 34(11):140-152 http://www.cnki.com.cn/Article/CJFDTOTAL-TXXB201311016.htm
    [24] 郭帅, 马书根, 李斌, 王明辉, 王越超. 基于Voronoi地图表示方法的同步定位与地图创建. 自动化学报, 2011, 37(9):1095-1104 http://www.aas.net.cn/CN/abstract/abstract17532.shtml

    Guo Shuai, Ma Shu-Gen, Li Bin, Wang Ming-Hui, Wang Yue-Chao. Simultaneous localization and mapping through a Voronoi-diagram-based map representation. Acta Automatica Sinica, 2011, 37(9):1095-1104 http://www.aas.net.cn/CN/abstract/abstract17532.shtml
    [25] Bourgeois N, Croce F D, Escoffier B, Paschos V T. Fast algorithms for min independent dominating set. Discrete Applied Mathematics, 2013, 161(4-5):558-572 doi: 10.1016/j.dam.2012.01.003
    [26] 路纲, 周明天, 唐勇, 吴振强, 裘国永, 袁柳. 任意图支配集精确算法回顾. 计算机学报, 2010, 33(6):1073-1087 doi: 10.3724/SP.J.1016.2010.01073

    Lu Gang, Zhou Ming-Tian, Tang Yong, Wu Zhen-Qiang, Qiu Guo-Yong, Yuan Liu. A survey on exact algorithms for dominating set related problems in arbitrary graphs. Chinese Journal of Computers, 2010, 33(6):1073-1087 doi: 10.3724/SP.J.1016.2010.01073
    [27] Chen S M, Chien C Y. Solving the traveling salesman problem based on the genetic simulated annealing ant colony system with particle swarm optimization techniques. Expert Systems with Applications, 2011, 38(12):14439-14450 doi: 10.1016/j.eswa.2011.04.163
    [28] 饶卫振, 金淳. 基于求解TSP问题的改进贪婪算法. 运筹与管理, 2012, 21(6):1-9 http://www.cnki.com.cn/Article/CJFDTOTAL-YCGL201206003.htm

    Rao Wei-Zhen, Jin Chun. An improved greedy heuristic based on solving traveling salesman problem. Operations Research and Management Science, 2012, 21(6):1-9 http://www.cnki.com.cn/Article/CJFDTOTAL-YCGL201206003.htm
    [29] Hassin R, Keinan A. Greedy heuristics with regret, with application to the cheapest insertion algorithm for the TSP. Operations Research Letters, 2008, 36(2):243-246 doi: 10.1016/j.orl.2007.05.001
    [30] Qin H S, Zhou S L, Huo L, Luo J. A new ant colony algorithm based on dynamic local search for TSP. In:Proceedings of the 5th International Conference on Communication Systems and Network Technologies. Gwalior, India:IEEE, 2015.913-917
    [31] Wang P D, Tang Y L, Li Y, Yang X X. Improved ant colony algorithm for traveling salesman problems. In:Proceedings of the 24th Chinese Control and Decision Conference. Taiyuan, China:IEEE, 2012.660-664
  • 加载中
图(17) / 表(7)
计量
  • 文章访问数:  2224
  • HTML全文浏览量:  266
  • PDF下载量:  1278
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-24
  • 录用日期:  2016-02-14
  • 刊出日期:  2016-08-01

目录

    /

    返回文章
    返回