2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类存在参数摄动的线性随机系统的鲁棒间歇故障诊断方法

鄢镕易 何潇 周东华

鄢镕易, 何潇, 周东华. 一类存在参数摄动的线性随机系统的鲁棒间歇故障诊断方法. 自动化学报, 2016, 42(7): 1004-1013. doi: 10.16383/j.aas.2016.c150756
引用本文: 鄢镕易, 何潇, 周东华. 一类存在参数摄动的线性随机系统的鲁棒间歇故障诊断方法. 自动化学报, 2016, 42(7): 1004-1013. doi: 10.16383/j.aas.2016.c150756
YAN Rong-Yi, HE Xiao, ZHOU Dong-Hua. Robust Diagnosis of Intermittent Faults for Linear Stochastic Systems Subject to Time-varying Perturbations. ACTA AUTOMATICA SINICA, 2016, 42(7): 1004-1013. doi: 10.16383/j.aas.2016.c150756
Citation: YAN Rong-Yi, HE Xiao, ZHOU Dong-Hua. Robust Diagnosis of Intermittent Faults for Linear Stochastic Systems Subject to Time-varying Perturbations. ACTA AUTOMATICA SINICA, 2016, 42(7): 1004-1013. doi: 10.16383/j.aas.2016.c150756

一类存在参数摄动的线性随机系统的鲁棒间歇故障诊断方法

doi: 10.16383/j.aas.2016.c150756
基金项目: 

国家自然科学基金 61290324

国家自然科学基金 61490701

山东省泰山学者优势特色学科人才团队支持计划 [2015]73

国家自然科学基金 61522309

国家自然科学基金 61473163

清华大学自主科研项目 025-CMY-Z09

详细信息
    作者简介:

    鄢镕易 清华大学自动化系博士研究生.主要研究方向为间歇故障诊断与容错控制, 高速列车故障诊断与容错控制.E-mail:yry10@mails.tsinghua.edu.cn

    何潇  清华大学自动化系副教授.主要研究方向为网络化系统的鲁棒滤波、故障诊断与容错控制, 无人机(群)智能自主控制中的安全性问题, 高速列车信息控制系统的故障诊断.E-mail:hexiao@tsinghua.edu.cn

    通讯作者:

    周东华 山东科技大学电气与自动化工程学院教授, 清华大学自动化系教授.主要研究方向为动态系统的故障诊断与容错控制, 故障预测与智能维护技术.本文通信作者.E-mail:zdh@mail.tsinghua.edu.cn

Robust Diagnosis of Intermittent Faults for Linear Stochastic Systems Subject to Time-varying Perturbations

Funds: 

Supported by National Natural Science Foundation of China 61290324

Supported by National Natural Science Foundation of China 61490701

Research Fund for the Taishan Scholar Project of Shandong Province [2015]73

Supported by National Natural Science Foundation of China 61522309

Supported by National Natural Science Foundation of China 61473163

Tsinghua University Initiative Scientific Research Program 025-CMY-Z09

More Information
    Author Bio:

    Ph. D. candidate in the Department of Automation, Tsinghua University. His research interest covers fault diagnosis and tolerance control of intermittent faults, fault diagnosis for the information control system of high-speed trains

    Associate professor in the Department of Automation, Tsinghua University. His research interest covers robust estimation, fault diagnosis and tolerant control of networked systems, safety problems in intelligent autonomous control of unmanned aerial vehicles, fault diagnosis for the information control system of high-speed trains

    Corresponding author: ZHOU Dong-Hua Professor at the College of Electrical Engineering and Automation, Shandong University of Science and Technology, and the Department of Automation, Tsinghua University. His research interest covers fault diagnosis and tolerant control, fault prediction and intelligent maintenance. Corresponding author of this paper
  • 摘要: 间歇故障(Intermittent faults, IFs)具有随机性,其检测要求在本次间歇故障消失之前检测出间歇故障的发生,在下一次间歇故障发生之前检测出间歇故障的消失.本文针对一类存在未知时变参数摄动的离散线性随机动态系统,研究了其鲁棒间歇故障检测与分离问题.基于降维未知输入观测器,通过引入滑动时间窗口,本文设计了一组与未知时变摄动解耦的结构化截断残差,并提出其存在的一个充分条件.与传统残差相比,截断残差信号更为显著地反映了间歇故障的发生和消失.为满足间歇故障的检测要求,本文提出两个假设检验分别用于检测间歇故障的发生时刻和消失时刻,并给出了一个详细算法.最后,在沿参考轨道运行的卫星模型上对所述方法进行了仿真实验,结果表明该方法能够有效检测出间歇故障的所有发生时刻和消失时刻,并准确实现故障分离.
  • 图  1  间歇故障与滑动时间窗口的相对位置关系

    Fig.  1  Relative positions between the intermittent fault and the sliding-time windo

    图  2  正常运行时的系统输出

    Fig.  2  Normal output of the satellite system (20)

    图  3  k=500时发生间歇m3(k)的系统输出

    Fig.  3  Output of system (20) subject to the IF m3(k)

    图  4  初始残差信号 $r_1(k)$ 和新残差信号 $r_1(k, \Delta k_1)$

    Fig.  4  Comparing $r_1(k, \Delta k_1)$ with $r_1(k)$

    图  5  初始残差信号 $r_2(k)$ 和新残差信号 $r_2(k, \Delta k_2) $

    Fig.  5  Comparing $r_2(k, \Delta k_2)$ with $r_2(k)$

    图  6  初始残差信号 $r_3(k)$ 和新残差信号 $r_3(k, \Delta k_3) $

    Fig.  6  Comparing $r_3(k, \Delta k_3)$ with $r_3(k)$

    图  7  间歇故障检测结果

    Fig.  7  by using the proposed method

    图  8  基于Kalman滤波方法的残差信号

    Fig.  8  The Kalman filter based residual

    表  1  间歇故障发生(消失)时刻及其实际检测值

    Table  1  The detection result of $m_3(k)$ by using the proposed method

    q $\mu_{3, q}$ $\mu_{3, q}^{\text{dec}}$ $\nu_{3, q}$ $\nu_{3, q}^{\text{dec}}$
    1 5.00 5.03 5.57 5.62
    2 6.02 6.03 6.59 6.67
    3 7.14 7.15 7.75 7.77
    4 8.32 8.34 8.83 8.87
    5 9.26 9.28 9.76 9.87
    下载: 导出CSV
  • [1] 周东华, 史建涛, 何潇.动态系统间歇故障诊断技术综述.自动化学报, 2014, 40(2):161-171 http://www.aas.net.cn/CN/abstract/abstract18279.shtml

    Zhou Dong-Hua, Shi Jian-Tao, He Xiao. Review of intermittent fault diagnosis techniques for dynamic systems. Acta Automatica Sinica, 2014, 40(2):161-171 http://www.aas.net.cn/CN/abstract/abstract18279.shtml
    [2] Chen M Y, Xu G B, Yan R Y, Ding S X, Zhou D H. Detecting scalar intermittent faults in linear stochastic dynamic systems. International Journal of Systems Science, 2015, 46(8):1337-1348 http://cn.bing.com/academic/profile?id=2005939068&encoded=0&v=paper_preview&mkt=zh-cn
    [3] Correcher A, García E, Morant F, Quiles E, Blasco-Gimenez R. Intermittent failure diagnosis in industrial processes. In:Proceedings of the 2003 IEEE International Symposium on Industrial Electronics. Rio de Janeiro, Brazil:IEEE, 2003. 723-728
    [4] Rashid L, Pattabiraman K, Gopalakrishnan S. Characterizing the impact of intermittent hardware faults on programs. IEEE Transactions on Reliability, 2015, 64(1):297-310 doi: 10.1109/TR.2014.2363152
    [5] Shivakumar P, Kistler M, Keckler S W, Burger D, Alvisi L. Modeling the impact of device and pipeline scaling on the soft error rate of processor elements. Computer Science Department, University of Texas at Austin, 2002. http://cn.bing.com/academic/profile?id=87137010&encoded=0&v=paper_preview&mkt=zh-cn
    [6] 周东华, 魏慕恒, 司小胜.工业过程异常检测、寿命预测与维修决策的研究进展.自动化学报, 2013, 39(6):711-722 http://www.aas.net.cn/CN/abstract/abstract18097.shtml

    Zhou Dong-Hua, Wei Mu-Heng, Si Xiao-Sheng. A survey on anomaly detection, life prediction and maintenance decision for industrial processes. Acta Automatica Sinica, 2013, 39(6):711-722 http://www.aas.net.cn/CN/abstract/abstract18097.shtml
    [7] Sorensen B A, Kelly G, Sajecki A, Sorensen P W. An analyzer for detecting intermittent faults in electronic devices. In:Proceedings of AUTOTESTCON'94 IEEE Conference on Systems Readiness Technology——"Cost Effective Support into the Next Century". Anaheim, USA:IEEE, 1994. 417-421
    [8] Yesilyurt I, Gu F S, Ball A D. Gear tooth stiffness reduction measurement using modal analysis and its use in wear fault severity assessment of spur gears. NDT and E International, 2003, 36(5):357-372 doi: 10.1016/S0963-8695(03)00011-2
    [9] Zanardelli W G, Strangas E G, Aviyente S. Identification of intermittent electrical and mechanical faults in permanent-magnet AC drives based on time-frequency analysis. IEEE Transactions on Industry Applications, 2007, 43(4):971-980 doi: 10.1109/TIA.2007.900446
    [10] 马洁, 李刚, 陈默.基于非线性故障重构的旋转机械故障预测方法.自动化学报, 2014, 40(9):2045-2049 http://www.aas.net.cn/CN/abstract/abstract18477.shtml

    Ma Jie, Li Gang, Chen Mo. Nonlinear fault reconstruction based fault prognosis for rotating machinery. Acta Automatica Sinica, 2014, 40(9):2045-2049 http://www.aas.net.cn/CN/abstract/abstract18477.shtml
    [11] Hamel A, Gaudreau A, Cote M. Intermittent arcing fault on underground low-voltage cables. IEEE Transactions on Power Delivery, 2004, 19(4):1862-1868 doi: 10.1109/TPWRD.2003.822979
    [12] Correcher A, García E, Morant F, Quiles E, Rodriguez L. Intermittent failure dynamics characterization. IEEE Transactions on Reliability, 2012, 61(3):649-658 doi: 10.1109/TR.2012.2208300
    [13] Kim C J. Electromagnetic radiation behavior of low-voltage arcing fault. IEEE Transactions on Power Delivery, 2009, 24(1):416-423 doi: 10.1109/TPWRD.2008.2002873
    [14] 周东华, 陈茂银, 徐正国.可靠性预测与最优维护技术.合肥:中国科学技术大学出版社, 2013.

    Zhou Dong-Hua, Chen Mao-Yin, Xu Zheng-Guo. The Reliabibility Prediction and Optimal Maintenance Technology. Hefei:Press of University of Science and Technology of China, 2013.
    [15] 徐贵斌.动态系统故障诊断及预测研究[硕士学位论文], 清华大学, 中国, 2011.

    Xu Gui-Bin. Researches on Fault Diagnosis and Prediction in Dynamic Systems[Master dissertation], Tsinghua University, China, 2011.
    [16] Krasnobaev V A, Krasnobaev L A. Application of Petri nets for the modeling of detection and location of intermittent faults in computers. Automation and Remote Control, 1989, 49(9):1198-1204
    [17] Bennett S M, Patton R J, Daley S, Newton D A. Torque and flux estimation for a rail traction system in the presence of intermittent sensor faults. In:Proceedings of United Kingdom Automatic Control Council International Conference on Control'96. Exeter University, UK:IET, 1996. 72-77
    [18] Wang Y, Xu G H, Zhang Q, Liu D, Jiang K S. Rotating speed isolation and its application to rolling element bearing fault diagnosis under large speed variation conditions. Journal of Sound and Vibration, 2015, 348:381-396 doi: 10.1016/j.jsv.2015.03.018
    [19] Zhou C J, Huang X F, Xiong N X, Qin Y Q, Huang S. A class of general transient faults propagation analysis for networked control systems. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2015, 45(4):647-661 doi: 10.1109/TSMC.2014.2384480
    [20] 顾洲, 张建华, 杜黎龙.一类具有间歇性执行器故障的时滞系统的容错控制.控制与决策, 2011, 26(12):1829-1834 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201112014.htm

    Gu Zhou, Zhang Jian-Hua, Du Li-Long. Fault tolerant control for a class of time-delay systems with intermittent actuators failure. Control and Decision, 2011, 26(12):1829-1834 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201112014.htm
    [21] Edelmayer A, Bokor J, Szigeti F, Keviczky L. Robust detection filter design in the presence of time-varying system perturbations. Automatica, 1997, 33(3):471-475 doi: 10.1016/S0005-1098(96)00189-6
    [22] Kudva P, Viswanadham N, Ramakrishna A. Observers for linear systems with unknown inputs. IEEE Transactions on Automatic Control, 1980, 25(1):113-115 doi: 10.1109/TAC.1980.1102245
    [23] Meskin N, Khorasani K. Fault detection and isolation of discrete-time Markovian jump linear systems with application to a network of multi-agent systems having imperfect communication channels. Automatica, 2009, 45(9):2032-2040 doi: 10.1016/j.automatica.2009.04.020
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  2514
  • HTML全文浏览量:  299
  • PDF下载量:  1809
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-11
  • 录用日期:  2016-03-20
  • 刊出日期:  2016-07-01

目录

    /

    返回文章
    返回