2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度神经网络的语音驱动发音器官的运动合成

唐郅 侯进

唐郅, 侯进. 基于深度神经网络的语音驱动发音器官的运动合成. 自动化学报, 2016, 42(6): 923-930. doi: 10.16383/j.aas.2016.c150726
引用本文: 唐郅, 侯进. 基于深度神经网络的语音驱动发音器官的运动合成. 自动化学报, 2016, 42(6): 923-930. doi: 10.16383/j.aas.2016.c150726
TANG Zhi, HOU Jin. Speech-driven Articulator Motion Synthesis with Deep Neural Networks. ACTA AUTOMATICA SINICA, 2016, 42(6): 923-930. doi: 10.16383/j.aas.2016.c150726
Citation: TANG Zhi, HOU Jin. Speech-driven Articulator Motion Synthesis with Deep Neural Networks. ACTA AUTOMATICA SINICA, 2016, 42(6): 923-930. doi: 10.16383/j.aas.2016.c150726

基于深度神经网络的语音驱动发音器官的运动合成

doi: 10.16383/j.aas.2016.c150726
基金项目: 

成都市科技项目(科技惠民技术研发项目) 2015-HM01-00050-SF

四川省动漫研究中心2015年度科研项目 DM201504

西南交通大学2015年研究生创新实验实践项目 YC201504109

详细信息
    作者简介:

    唐郅 西南交通大学信息科学与技术学院硕士研究生. 主要研究方向为虚拟说话人动画与模式识别. E-mail: tang zhi@126.com

    通讯作者:

    侯进 西南交通大学信息科学与技术学院副教授. 主要研究方向为计算机动画,数字艺术和自动驾驶. 本文通信作者. E-mail: jhou@swjtu.edu.cn

Speech-driven Articulator Motion Synthesis with Deep Neural Networks

Funds: 

Supported by Science and Technology Program of Chengdu(Science and Technology Bene¯t Project) 2015-HM01-00050-SF

2015 Annual Research Programs of Sichuan Animation Re-search Center DM201504

2015 Graduate Innovative Ex-perimental Programs of Southwest Jiaotong University YC201504109

More Information
    Author Bio:

    TANG Zhi Master student at the School of Information Science and Technology, Southwest Jiaotong Uni-versity. His research interest covers talking avatar animation and pattern recognition.

    Corresponding author: HOU Jin. Associate professor at the School of Information Science and Technology, Southwest Jiaotong Uni-versity. Her research interest covers computer animation, digital art, and automatic driving. Corresponding author of this paper. E-mail:jhou@swjtu.edu.cn
  • 摘要: 实现一种基于深度神经网络的语音驱动发音器官运动合成的方法,并应用于语音驱动虚拟说话人动画合成. 通过深度神经网络(Deep neural networks, DNN)学习声学特征与发音器官位置信息之间的映射关系,系统根据输入的语音数据估计发音器官的运动轨迹,并将其体现在一个三维虚拟人上面. 首先,在一系列参数下对比人工神经网络(Artificial neural network, ANN)和DNN的实验结果,得到最优网络; 其次,设置不同上下文声学特征长度并调整隐层单元数,获取最佳长度; 最后,选取最优网络结构,由DNN 输出的发音器官运动轨迹信息控制发音器官运动合成,实现虚拟人动画. 实验证明,本文所实现的动画合成方法高效逼真.
  • 图  1  MNGU0数据库中EMA记录发音器官的6个观测点[22]

    Fig.  1  Positioning of the six electromagnetic coils in the MNGU0 datasetsup>[22]

    图  2  嘴部网格模型

    Fig.  2  Mouth mesh model

    图  3  舌部网格模型

    Fig.  3  Tongue mesh model

    图  4  下颌的旋转角度分析

    Fig.  4  The rotation of the mandible angle analysis

    图  5  对比ANN 和DNN 的实验结果

    Fig.  5  Comparison on the experimental results of ANN and DNN

    图  6  比较ANN 和DNN 估计的发音器官运动轨迹

    Fig.  6  Comparison on the estimated articulatory motion trajectories between ANN and DNN

    图  7  口型动画部分截图

    Fig.  7  Snapshots from the lip animation

    表  1  上下文窗的长度对RMSE 的影响

    Table  1  E®ect of the length of the context window on the RMSE

    上下文长度(帧数) RMSE (cm)
    60.149
    100.141
    140.138
    180.135
    220.134
    260.134
    300.136
    下载: 导出CSV

    表  2  客观评价结果

    Table  2  Objective assessment results

    传统方法 本文方法
    Obj 3.6 3.7
    下载: 导出CSV
  • [1] Liu J, You M Y, Chen C, Song M L. Real-time speech-driven animation of expressive talking faces. International Journal of General Systems, 2011, 40(4): 439-455
    [2] Le B H, Ma X H, Deng Z G. Live speech driven head-and-eye motion generators. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(11): 1902-1914
    [3] Han W, Wang L J, Soong F, Yuan B. Improved minimum converted trajectory error training for real-time speech-to-lips conversion. In: Proceedings of the 2012 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Kyoto, Japan: IEEE, 2012. 4513-4516
    [4] Ben-Youssef A, Shimodaira H, Braude D A. Speech driven talking head from estimated articulatory features. In: Proceedings of the 2014 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Florence, Italy: IEEE, 2014. 4573-4577
    [5] Ding C, Zhu P C, Xie L, Jiang D M, Fu Z H. Speech-driven head motion synthesis using neural networks. In: Proceedings of the 2014 Annual Conference of the International Speech Communication Association (INTERSPEECH). Singapore, Singapore: ISCA, 2014. 2303-2307
    [6] Richmond K, King S, Taylor P. Modelling the uncertainty in recovering articulation from acoustics. Computer Speech and Language, 2003, 17(2-3): 153-172
    [7] Zhang L, Renals S. Acoustic-articulatory modeling with the trajectory HMM. IEEE Signal Processing Letters, 2008, 15: 245-248
    [8] Toda T, Black A W, Tokuda K. Statistical mapping between articulatory movements and acoustic spectrum using a Gaussian mixture model. Speech Communication, 2008, 50(3): 215-227
    [9] Xie L, Liu Z Q. Realistic mouth-synching for speech-driven talking face using articulatory modelling. IEEE Transactions on Multimedia, 2007, 9(3): 500-510
    [10] Uria B, Renals S, Richmond K. A deep neural network for acoustic-articulatory speech inversion. In: Proceedings of the 2011 NIPSWorkshop on Deep Learning and Unsupervised Feature Learning. Granada, Spain: NIPS, 2011. 1-9
    [11] Zhao K, Wu Z Y, Cai L H. A real-time speech driven talking avatar based on deep neural network. In: Proceedings of the 2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA). Kaohsiung, China: IEEE, 2013. 1-4
    [12] Tang H, Fu Y, Tu J L, Hasegawa J M, Huang T S. Humanoid audio-visual avatar with emotive text-to-speech synthesis. IEEE Transactions on Multimedia, 2008, 10(6): 969-981
    [13] Fu Y, Li R X, Huang T S, Danielsen M. Real-time multimodal human-avatar interaction. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(4): 467-477
    [14] Schreer O, Englert R, Eisert P, Tanger R. Real-time vision and speech driven avatars for multimedia applications. IEEE Transactions on Multimedia, 2008, 10(3): 352-360
    [15] Liu K, Ostermann J. Realistic facial expression synthesis for an image-based talking head. In: Proceedings of the 2011 IEEE International Conference on Multimedia and Expo (ICME). Barcelona, Spain: IEEE, 2011. 1-6
    [16] 杨逸,侯进,王献.基于运动轨迹分析的3D唇舌肌肉控制模型.计算机应用研究,2013, 30(7): 2236-2240

    Yang Yi, Hou Jin, Wang Xian. Mouth and tongue model controlled by muscles based on motion trail analyzing. Application Research of Computers, 2013, 30(7): 2236-2240
    [17] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504-507
    [18] Hinton G E. A practical guide to training restricted Boltzmann machines. Neural Networks: Tricks of the Trade (2nd Edition). Berlin: Springer-Verlag, 2012. 599-619
    [19] Tieleman T. Training restricted Boltzmann machines using approximations to the likelihood gradient. In: Proceedings of the 25th International Conference on Machine Learning (ICML). New York, USA: ACM, 2008. 1064-1071
    [20] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18(7): 1527-1554
    [21] Hinton G, Deng L, Yu D, Dahl G E, Mohamed A R, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath T N, Kingsbury B. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Processing Magazine, 2012, 29(6): 82-97
    [22] Richmond K, Hoole P, King S. Announcing the electromagnetic articulography (day 1) subset of the mngu0 articulatory. In: Proceedings of the 2001 Annual Conference of the International Speech Communication Association (INTERSPEECH). Florence, Italy: ISCA, 2011. 1505-1508
    [23] Kawahara H, Estill J, Fujimura O. Aperiodicity extraction and control using mixed mode excitation and group delay manipulation for a high quality speech analysis, modification and synthesis system STRAIGHT. In: Proceedings of the 2nd International Workshop Models and Analysis of Vocal Emissions for Biomedical Application (MAVEBA). Firenze, Italy, 2001. 59-64
    [24] 李皓,陈艳艳,唐朝京.唇部子运动与权重函数表征的汉语动态视位.信号处理,2012, 28(3): 322-328

    Li Hao, Chen Yan-Yan, Tang Chao-Jing. Dynamic Chinese visemes implemented by lip sub-movements and weighting function. Signal Processing, 2012, 28(3): 322-328
    [25] Deng L, Li J Y, Huang J T, Yao K S, Yu D, Seide F, Seltzer M, Zweig G, He X D, Williams J, Gong Y F, Acero A. Recent advances in deep learning for speech research at Microsoft. In: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Vancouver, Canada: IEEE, 2013. 8604-8608
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  2237
  • HTML全文浏览量:  449
  • PDF下载量:  1288
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-31
  • 录用日期:  2016-05-03
  • 刊出日期:  2016-06-20

目录

    /

    返回文章
    返回