2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多模特征深度学习的机器人抓取判别方法

仲训杲 徐敏 仲训昱 彭侠夫

仲训杲, 徐敏, 仲训昱, 彭侠夫. 基于多模特征深度学习的机器人抓取判别方法. 自动化学报, 2016, 42(7): 1022-1029. doi: 10.16383/j.aas.2016.c150661
引用本文: 仲训杲, 徐敏, 仲训昱, 彭侠夫. 基于多模特征深度学习的机器人抓取判别方法. 自动化学报, 2016, 42(7): 1022-1029. doi: 10.16383/j.aas.2016.c150661
ZHONG Xun-Gao, XU Min, ZHONG Xun-Yu, PENG Xia-Fu. Multimodal Features Deep Learning for Robotic Potential Grasp Recognition. ACTA AUTOMATICA SINICA, 2016, 42(7): 1022-1029. doi: 10.16383/j.aas.2016.c150661
Citation: ZHONG Xun-Gao, XU Min, ZHONG Xun-Yu, PENG Xia-Fu. Multimodal Features Deep Learning for Robotic Potential Grasp Recognition. ACTA AUTOMATICA SINICA, 2016, 42(7): 1022-1029. doi: 10.16383/j.aas.2016.c150661

基于多模特征深度学习的机器人抓取判别方法

doi: 10.16383/j.aas.2016.c150661
基金项目: 

厦门市科技计划项目 3502Z20143034

厦门理工学院高层次人才项目 YKJ15020R

福建省科技计划重点项目 2014H0047

国家自然科学基金 61305117

详细信息
    作者简介:

    仲训杲 博士, 厦门理工学院电气工程与自动化学院讲师.主要研究方向为机器学习和机器人视觉伺服.E-mail:zhongxungao@163.com

    徐敏 厦门理工学院电气工程与自动化学院教授.主要研究方向为模式识别和机器人智能控制.E-mail:xumin@xmut.edu.cn

    彭侠夫 博士, 厦门大学自动化系教授.主要研究方向为机器人导航与运动控制, 机器学习.E-mail:xfpeng@xmu.edu.cn

    通讯作者:

    仲训昱 博士, 厦门大学自动化系副教授.主要研究方向为机器视觉, 机器人运动规划, 遥自主机器人.本文通信作者.E-mail:zhongxunyu@xmu.edu.cn

Multimodal Features Deep Learning for Robotic Potential Grasp Recognition

Funds: 

Science Plan Project of Xiamen City 3502Z20143034

High-level Talent Fund of Xiamen University of Technology YKJ15020R

Key Science Project of Fujian Province 2014H0047

Supported by National Natural Science Foundation of China 61305117

More Information
    Author Bio:

    Ph. D., lecturer at the School of Electrical Engineering and Automation, Xiamen University of Technology. His research interest covers machine learning and robotic visual servoing

    Professor at the School of Electrical Engineering and Automation, Xiamen University of Technology. His research interest covers pattern identification and intelligent control of robotic

    Ph. D., professor in the Department of Automation, Xiamen University. His research interest covers navigation and motion control of robotic, machine learning

    Corresponding author: ZHONG Xun-Yu Ph. D., associate professor in the Department of Automation, Xiamen University. His research interest covers machine vision, robot motion planning, mobile and autonomous robotics. Corresponding author of this paper
  • 摘要: 针对智能机器人抓取判别问题,研究多模特征深度学习与融合方法.该方法将测试特征分布偏离训练特征视为一类噪化,引入带稀疏约束的降噪自动编码(Denoising auto-encoding, DAE),实现网络权值学习;并以叠层融合策略,获取初始多模特征的深层抽象表达,两种手段相结合旨在提高深度网络的鲁棒性和抓取判别精确性.实验采用深度摄像机与6自由度工业机器人组建测试平台,对不同类别目标进行在线对比实验.结果表明,设计的多模特征深度学习依据人的抓取习惯,实现最优抓取判别,并且机器人成功实施抓取定位,研究方法对新目标具备良好的抓取判别能力.
  • 图  1  叠层DAE深度学习过程

    Fig.  1  The processing of stacked DAE deep learning

    图  2  抓取判别测试数据

    Fig.  2  Test dataset for potential grasp recognition

    图  3  不同类别目标抓取判别结果

    Fig.  3  Grasp recognition results for variety of targets

    图  4  AE和本文DAE训练方法结果比较

    Fig.  4  Results comparison between AE and our DAE training methods

    图  5  不同特征融合结果比较

    Fig.  5  Results comparison between different features

    图  6  机器人对不同物体实施抓取判别与定位

    Fig.  6  Robot executing grasp recognition and positioning for different targets

    图  7  机器人对不同摆放方向物体实施抓取判别与定位

    Fig.  7  Robot executing grasp recognition and positioning for targets with different poses

    表  1  机器人对不同物体、不同摆放方向抓取定位统计结果

    Table  1  Results of robot grasp positioning for different targets with different poses

    矩形盒 杯子 盘子 工具 总计
    实验总次数 23 21 27 25 96
    成功次数 22 18 25 23 88
    成功率(%) 95.7 85.7 92.6 92 91.7
    下载: 导出CSV
  • [1] Paolini R, Rodriguez A, Srinivasa S S, Mason M T. A data-driven statistical framework for post-grasp manipulation. The International Journal of Robotics Research, 2014, 33(4):600-615 doi: 10.1177/0278364913507756
    [2] 贾丙西, 刘山, 张凯祥, 陈剑.机器人视觉伺服研究进展:视觉系统与控制策略.自动化学报, 2015, 41(5):861-873 http://www.aas.net.cn/CN/abstract/abstract18661.shtml

    Jia Bing-Xi, Liu Shan, Zhang Kai-Xiang, Chen Jian. Survey on robot visual servo control:vision system and control strategies. Acta Automatica Sinica, 2015, 41(5):861-873 http://www.aas.net.cn/CN/abstract/abstract18661.shtml
    [3] Droniou A, Ivaldi S, Sigaud O. Deep unsupervised network for multimodal perception, representation and classification. Robotics and Autonomous Systems, 2015, 71(9):83-98 http://cn.bing.com/academic/profile?id=2009841905&encoded=0&v=paper_preview&mkt=zh-cn
    [4] 高莹莹, 朱维彬.深层神经网络中间层可见化建模.自动化学报, 2015, 41(9):1627-1637 http://www.aas.net.cn/CN/abstract/abstract18736.shtml

    Gao Ying-Ying, Zhu Wei-Bin. Deep neural networks with visible intermediate layers. Acta Automatica Sinica, 2015, 41(9):1627-1637 http://www.aas.net.cn/CN/abstract/abstract18736.shtml
    [5] 乔俊飞, 潘广源, 韩红桂.一种连续型深度信念网的设计与应用.自动化学报, 2015, 41(12):2138-2146 http://www.aas.net.cn/CN/abstract/abstract18786.shtml

    Qiao Jun-Fei, Pan Guang-Yuan, Han Hong-Gui. Design and application of continuous deep belief network. Acta Automatica Sinica, 2015, 41(12):2138-2146 http://www.aas.net.cn/CN/abstract/abstract18786.shtml
    [6] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786):504-507 doi: 10.1126/science.1127647
    [7] Bengio Y. Learning deep architectures for AI. Foundations and TrendsoledR in Machine Learning, 2009, 2(1):1-127 doi: 10.1561/2200000006
    [8] Längkvist M, Karlsson L, Loutfi A. A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognition Letters, 2014, 42:11-24 doi: 10.1016/j.patrec.2014.01.008
    [9] Erhan D, Bengio Y, Courville A, Manzagol P A, Vincent P, Bengio S. Why does unsupervised pre-training help deep learning? Journal of Machine Learning Research, 2010, 11:625-660 http://cn.bing.com/academic/profile?id=2138857742&encoded=0&v=paper_preview&mkt=zh-cn
    [10] Salakhutdinov R, Hinton G. Deep Boltzmann machines. In:Proceedings of the 12th International Conference on Artificial Intelligence and Statistics (AISTATS) 2009. Florid, USA, 2009. 448-455
    [11] Ngiam J, Khosla A, Kim M, Nam J, Lee H, Ng A Y. Multimodal deep learning. In:Proceedings of the 28th International Conference on Machine Learning. Bellevue, USA, 2011. 689-696
    [12] Baldi P, Lu Z Q. Complex-valued autoencoders. Neural Networks, 2012, 33:136-147 doi: 10.1016/j.neunet.2012.04.011
    [13] Wu P C, Hoi S C H, Xia H, Zhao P L, Wang D Y, Miao C Y. Online multimodal deep similarity learning with application to image retrieval. In:Proceedings of the 21st ACM International Conference on Multimedia. Barcelona, Spain:ACM, 2013. 153-162
    [14] 耿杰, 范剑超, 初佳兰, 王洪玉.基于深度协同稀疏编码网络的海洋浮筏SAR图像目标识别.自动化学报, 2016, 42(4):593-604 http://www.aas.net.cn/CN/abstract/abstract18846.shtml

    Geng Jie, Fan Jian-Chao, Chu Jia-Lan, Wang Hong-Yu. Research on marine floating raft aquaculture SAR image target recognition based on deep collaborative sparse coding network. Acta Automatica Sinica, 2016, 42(4):593-604 http://www.aas.net.cn/CN/abstract/abstract18846.shtml
    [15] Mohamed A R, Dahl G E, Hinton G. Acoustic modeling using deep belief networks. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(1):14-22 doi: 10.1109/TASL.2011.2109382
    [16] Sarikaya R, Hinton G E, Deoras A. Application of deep belief networks for natural language understanding. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2014, 22(4):778-784 doi: 10.1109/TASLP.2014.2303296
    [17] Humphrey E J, Bello J P, LeCun Y. Feature learning and deep architectures:new directions for music informatics. Journal of Intelligent Information Systems, 2013, 41(3):461-481 doi: 10.1007/s10844-013-0248-5
    [18] Yu J C, Weng K J, Liang G Y, Xie G H. A vision-based robotic grasping system using deep learning for 3D object recognition and pose estimation. In:Proceedings of the 2013 IEEE International Conference on Robotics and Biomimetics. Shenzhen, China:IEEE, 2013. 1175-1180
    [19] Noda K, Arie H, Suga Y, Ogata T. Multimodal integration learning of object manipulation behaviors using deep neural networks. In:Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan:IEEE, 2013. 1728-1733
    [20] Lenz I, Lee H, Saxena A. Deep learning for detecting robotic grasps. The International Journal of Robotics Research, 2015, 34(4-5):705-724 doi: 10.1177/0278364914549607
    [21] El-Khoury S, Sahbani A. A new strategy combining empirical and analytical approaches for grasping unknown 3D objects. Robotics and Autonomous Systems, 2010, 58(5):497-507 doi: 10.1016/j.robot.2010.01.008
    [22] Pelossof R, Miller A, Allen P, Jebara T. An SVM learning approach to robotic grasping. In:Proceedings of the 2004 IEEE International Conference on Robotics and Automation. New Orleans, USA:IEEE, 2004. 3512-3518
    [23] Boularias A, Kroemer O, Peters J. Learning robot grasping from 3-D images with Markov random fields. In:Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, USA:IEEE, 2011. 1548-1553
    [24] Papazov C, Haddadin S, Parusel S, Krieger K, Burschka D. Rigid 3D geometry matching for grasping of known objects in cluttered scenes. The International Journal of Robotics Research, 2012, 31(4):538-553 doi: 10.1177/0278364911436019
    [25] 刘建伟, 孙正康, 罗雄麟.域自适应学习研究进展.自动化学报, 2014, 40(8):1576-1600 http://www.aas.net.cn/CN/abstract/abstract18427.shtml

    Liu Jian-Wei, Sun Zheng-Kang, Luo Xiong-Lin. Review and research development on domain adaptation learning. Acta Automatica Sinica, 2014, 40(8):1576-1600 http://www.aas.net.cn/CN/abstract/abstract18427.shtml
    [26] Shin H C, Orton M R, Collins D J, Doran S J, Leach M O. Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8):1930-1943 doi: 10.1109/TPAMI.2012.277
    [27] Vincent P, Larochelle H, Bengio Y, Manzagol P A. Extracting and composing robust features with denoising autoencoders. In:Proceedings of the 25th International Conference on Machine Learning. Helsinki, Finland:ACM, 2008. 1096-1103
    [28] Jiang Y, Moseson, Saxena A. Efficient grasping from RGBD images:learning using a new rectangle representation. In:Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Shanghai, China:IEEE, 2011. 3304-3311
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  3951
  • HTML全文浏览量:  794
  • PDF下载量:  2890
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-16
  • 录用日期:  2016-05-03
  • 刊出日期:  2016-07-01

目录

    /

    返回文章
    返回