-
摘要: U-系统是一类L2[0,1]上的正交分段多项式函数系,为了将其推广到二维情形,传统的L2[0,1]2上张量积形式的U变换并不具有旋转不变性.本文提出了一类二维旋转不变U变换(Rotation-invariant U transform,RIUT). RIUT将U-系统函数与调和函数相结合,使得图像的旋转转化为相位的平移而模保持不变.与经典的正交旋转不变矩(如Zernike矩)相比,RIUT具有诸多特别的性质,从而在图像特征提取中具有良好的潜力.本文将RIUT应用到二值图像检索中的实验结果表明,RIUT具有更高的检索精度.Abstract: U-system is a class of orthogonal piecewise-polynomial function system in L2[0, 1], and its generalized U-system in L2[0, 1]2 with tensor-product form is not rotation-invariant. In this paper, we present a novel 2D transform named rotation-invariant U transform (RIUT). The construction of RIUT combines U-system functions with harmonic functions so that the object's rotation is transformed into its phase's translation and the modulus keeps unchanged. Compared with the classical rotation-invariant moments, such as Zernike moment, RIUT has many special properties, suggesting an applying potential in image feature extraction. The experiment results for binary image retrieval show that RIUT method has a higher retrieval precision.
-
Key words:
- Rotation-invariant /
- U-system /
- Zernike moment /
- binary image retrieval
-
表 1 各方法检索精度(CE2-A2图像库)(%)
Table 1 Retrieval precision of different methods (CE2-A2 image data set) (%)
检索精度 ZM PZM OFMM RIUT BEP 97.96 92.86 97.96 98.57 表 2 各方法检索精度(CE2-A4图像库) (%)
Table 2 Retrieval precision of different methods (CE2-A4 image data set) (%)
检索精度 ZM PZM OFMM RIUT BEP 70.39 58.87 70.66 76.97 表 3 CE2-B库中前10组相似商标数目
Table 3 The similar trademarks number for the first ten groups in CE2-B data set
组号 1 2 3 4 5 6 7 8 9 10 数目 68 244 22 28 17 22 45 145 45 42 表 4 每组商标的检索精度(%)
Table 4 Retrieval precision for each group (%)
组号 1 2 3 4 5 6 7 8 9 10 ZM 37.37 54.94 38.43 42.98 27.34 28.72 24.79 42.00 37.83 26.59 PZM 22.45 52.99 33.88 23.60 40.48 26.45 17.23 41.02 44.00 30.22 OFMM 25.65 49.41 30.37 38.90 33.22 22.31 26.27 45.65 29.23 22.90 RIUT 31.55 53.33 38.84 41.74 47.40 20.04 30.72 52.12 33.93 28.29 表 5 平均检索精度(%)
Table 5 The average retrieval precision (%)
检索精度 ZM PZM OFMM RIUT BEP 36.10 33.23 32.39 37.79 -
[1] Teague M R. Image analysis via the general theory of moments. Journal of the Optical Society of America, 1980, 70(8): 920-930 doi: 10.1364/JOSA.70.000920 [2] Teh C H, Chin R T. On image analysis by the methods of moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(4): 496-513 doi: 10.1109/34.3913 [3] Kan C, Srinath M D. Invariant character recognition with Zernike and orthogonal Fourier-Mellin moments. Pattern Recognition, 2002, 35(1): 143-154 doi: 10.1016/S0031-3203(00)00179-5 [4] Ghosal S, Mehrotra R. Detection of composite edges. IEEE Transactions on Image Processing, 1994, 3(1): 14-25 doi: 10.1109/83.265977 [5] 高世一, 赵明扬, 张雷, 邹媛媛.基于Zernike正交矩的图像亚像素边缘检测算法改进.自动化学报, 2008, 34(9): 1163-1168 http://www.aas.net.cn/CN/abstract/abstract17979.shtmlGao Shi-Yi, Zhao Ming-Yang, Zhang Lei, Zou Yuan-Yuan. Improved algorithm about subpixel edge detection of image based on Zernike orthogonal moments. Acta Automatica Sinica, 2008, 34(9): 1163-1168 http://www.aas.net.cn/CN/abstract/abstract17979.shtml [6] Wang L Z, Healey G. Using Zernike moments for the illumination and geometry invariant classification of multispectral texture. IEEE Transactions on Image Processing, 1998, 7(2): 196-203 doi: 10.1109/83.660996 [7] Chen Z, Sun S K. A Zernike moment phase-based descriptor for local image representation and matching. IEEE Transactions on Image Processing, 2010, 19(1): 205-219 doi: 10.1109/TIP.2009.2032890 [8] Flusser J, Suk T, Zitova B. Moments and Moment Invariants in Pattern Recognition. UK: John Wiley & Sons, 2009. [9] Sheng Y L, Shen L X. Orthogonal Fourier-Mellin moments for invariant pattern recognition. Journal of the Optical Society of America A, 1994, 11(6): 1748-1757 doi: 10.1364/JOSAA.11.001748 [10] Chong C W, Raveendran P, Mukundan R. A comparative analysis of algorithms for fast computation of Zernike moments. Pattern Recognition, 2003, 36(3): 731-742 doi: 10.1016/S0031-3203(02)00091-2 [11] Shu H Z, Luo L M, Coatrieux J L. Moment-based approaches in imaging part 3: computational considerations. IEEE Engineering in Medicine and Biology Magazine, 2008, 27(3): 89-91 doi: 10.1109/MEMB.2008.918690 [12] Li Z M, Men X P, Li H. 3D model retrieval based on U system rotation invariant moments. In: Proceedings of the 2nd International Conference on Pervasive Computing and Applications. Birmingham: IEEE, 2007. 183-188 [13] 刘玉杰, 李宗民, 李华, 齐东旭.三维U系统矩与三维模型检索.计算机辅助设计与图形学学报, 2006, 18(8): 1111-1116 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJF200608004.htmLiu Yu-Jie, Li Zong-Min, Li Hua, Qi Dong-Xu. 3D U system moment and 3D model retrieval. Journal of Computer-Aided Design & Computer Graphics, 2006, 18(8): 1111-1116 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJF200608004.htm [14] 陈伟, 张晓婷.正交旋转不变V矩及其在图像重建中的应用.自动化学报, 2015, 41(2): 376-385 http://www.aas.net.cn/CN/abstract/abstract18616.shtmlChen Wei, Zhang Xiao-Ting. Orthogonal rotation-invariant V moments and application to image reconstruction. Acta Automatica Sinica, 2015, 41(2): 376-385 http://www.aas.net.cn/CN/abstract/abstract18616.shtml [15] Feng Y Y, Qi D X. A sequence of piecewise orthogonal polynomials. SIAM Journal of Mathematical Analysis, 1984, 15: 834-844 doi: 10.1137/0515063 [16] 齐东旭, 宋瑞霞, 李坚.非连续正交函数.北京:科学出版社, 2011.Qi Dong-Xu, Song Rui-Xia, Li Jian. Discontinuous Orthogonal Functions. Beijing: Scientific Press, 2011. [17] 齐东旭, 陶尘钧, 宋瑞霞, 马辉, 孙伟, 蔡占川.基于正交完备U-系统的参数曲线图组表达.计算机学报, 2006, 29(5): 778-785 http://mall.cnki.net/magazine/article/jsjx200605012.htmQi Dong-Xu, Tao Chen-Jun, Song Rui-Xia, Ma Hui, Sun Wei, Cai Zhan-Chuan. Representation for a group of parametric curves based on the orthogonal complete U-system. Chinese Journal of Computers, 2006, 29(5): 778-785 http://mall.cnki.net/magazine/article/jsjx200605012.htm [18] 蔡占川, 孙伟, 齐东旭.基于正交完备U-系统的图形分类与识别方法.软件学报, 2006, 17(增刊): 21-27 http://www.oalib.com/paper/5071117Cai Zhan-Chuan, Sun Wei, Qi Dong-Xu. A classification and recognition method for planar figures based on complete orthogonal U-system. Journal of Software, 2006, 17(Suppl.): 21-27 http://www.oalib.com/paper/5071117 [19] 丁玮, 闫伟齐, 齐东旭.基于U系统的数字图象水印技术.中国图象图形学报, 2001, 6(6): 552-557 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200106007.htmDing Wei, Yan Wei-Qi, Qi Dong-Xu. Digital image watermarking based on U-system. Journal of Image and Graphics, 2001, 6(6): 552-557 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200106007.htm [20] 熊刚强, 余建德, 熊昌镇, 齐东旭. U-正交变换的可逆实现及其图像无损编码.计算机研究与发展, 2012, 49(4): 856-863 http://mall.cnki.net/magazine/Article/JFYZ201204029.htmXiong Gang-Qiang, Yu Jian-De, Xiong Chang-Zhen, Qi Dong-Xu. Reversible factorization of U orthogonal transform and image lossless coding. Journal of Computer Research and Development, 2012, 49(4): 856-863 http://mall.cnki.net/magazine/Article/JFYZ201204029.htm [21] Abu-Mostafa Y S, Psaltis D. Recognitive aspects of moment invariants. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(6): 698-706 http://cn.bing.com/academic/profile?id=2035062046&encoded=0&v=paper_preview&mkt=zh-cn