2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维旋转不变U变换及其应用

陈伟

陈伟. 二维旋转不变U变换及其应用. 自动化学报, 2016, 42(9): 1380-1388. doi: 10.16383/j.aas.2016.c150630
引用本文: 陈伟. 二维旋转不变U变换及其应用. 自动化学报, 2016, 42(9): 1380-1388. doi: 10.16383/j.aas.2016.c150630
CHEN Wei. 2D Rotation-invariant U Transform and Its Application. ACTA AUTOMATICA SINICA, 2016, 42(9): 1380-1388. doi: 10.16383/j.aas.2016.c150630
Citation: CHEN Wei. 2D Rotation-invariant U Transform and Its Application. ACTA AUTOMATICA SINICA, 2016, 42(9): 1380-1388. doi: 10.16383/j.aas.2016.c150630

二维旋转不变U变换及其应用

doi: 10.16383/j.aas.2016.c150630
基金项目: 

浙江大学CAD & CG国家重点实验室开放课题 A1609

中央高校基本科研业务费专项资金 JUSRP11416

国家自然科学基金 61170320

国家自然科学基金 61602213

国家自然科学基金 61402201

国家科技支撑计划 2015BAH54F00

详细信息
    作者简介:

    陈伟江南大学数字媒体学院讲师.2013年获得澳门科技大学理学博士学位.主要研究方向为计算机图形学和图像处理.E-mail:wchen_jdsm@163.com

2D Rotation-invariant U Transform and Its Application

Funds: 

the Open Project Program of the State Key Laboratory of CAD & CG of Zhejiang University A1609

Fundamental Research Funds for the Central Universities of China JUSRP11416

National Natural Science Foundation of China 61170320

National Natural Science Foundation of China 61602213

National Natural Science Foundation of China 61402201

National Science and Technology Support Program 2015BAH54F00

More Information
    Author Bio:

    Lecturer at the School of Digital Medial, Jiangnan University. He received his Ph. D. degree from Macau University of Science and Technology in 2013. His research interest covers computer graphics and image processing

  • 摘要: U-系统是一类L2[0,1]上的正交分段多项式函数系,为了将其推广到二维情形,传统的L2[0,1]2上张量积形式的U变换并不具有旋转不变性.本文提出了一类二维旋转不变U变换(Rotation-invariant U transform,RIUT). RIUT将U-系统函数与调和函数相结合,使得图像的旋转转化为相位的平移而模保持不变.与经典的正交旋转不变矩(如Zernike矩)相比,RIUT具有诸多特别的性质,从而在图像特征提取中具有良好的潜力.本文将RIUT应用到二值图像检索中的实验结果表明,RIUT具有更高的检索精度.
  • 图  1  1次U-系统的前16个基函数生成过

    Fig.  1  The first sixteen basis functions in U-system of degree one

    图  2  L2[0, 1]2上张量积形式的二维U-系统(k=1)

    Fig.  2  2D tensor product U-system on L2[0, 1]2(k=1)

    图  3  U-调和基函数图像

    Fig.  3  U-harmonic basis functions

    图  4  U-调和基函数的径向基

    Fig.  4  The radial kernels of U-harmonic basis functions

    图  5  Zernike多项式函数支撑

    Fig.  5  The suppression of Zernike polynomials

    图  6  图像的RIUT描述子

    Fig.  6  RIUT descriptor

    图  7  Lena图像旋转示例

    Fig.  7  Rotation examples of Lena image

    图  8  旋转图像的MSE

    Fig.  8  The MSE of rotated images

    图  9  CE2-A2库中图像示例

    Fig.  9  Images in CE2-A2 data set

    图  10  CE2-A4库中图像示例

    Fig.  10  Images in CE2-A4 data set

    图  11  CE2-B库中商标图像示例

    Fig.  11  Images in CE2-B data set

    表  1  各方法检索精度(CE2-A2图像库)(%)

    Table  1  Retrieval precision of different methods (CE2-A2 image data set) (%)

    检索精度 ZM PZM OFMM RIUT
    BEP 97.96 92.86 97.96 98.57
    下载: 导出CSV

    表  2  各方法检索精度(CE2-A4图像库) (%)

    Table  2  Retrieval precision of different methods (CE2-A4 image data set) (%)

    检索精度 ZM PZM OFMM RIUT
    BEP 70.39 58.87 70.66 76.97
    下载: 导出CSV

    表  3  CE2-B库中前10组相似商标数目

    Table  3  The similar trademarks number for the first ten groups in CE2-B data set

    组号 1 2 3 4 5 6 7 8 9 10
    数目 68 244 22 28 17 22 45 145 45 42
    下载: 导出CSV

    表  4  每组商标的检索精度(%)

    Table  4  Retrieval precision for each group (%)

    组号 1 2 3 4 5 6 7 8 9 10
    ZM 37.37 54.94 38.43 42.98 27.34 28.72 24.79 42.00 37.83 26.59
    PZM 22.45 52.99 33.88 23.60 40.48 26.45 17.23 41.02 44.00 30.22
    OFMM 25.65 49.41 30.37 38.90 33.22 22.31 26.27 45.65 29.23 22.90
    RIUT 31.55 53.33 38.84 41.74 47.40 20.04 30.72 52.12 33.93 28.29
    下载: 导出CSV

    表  5  平均检索精度(%)

    Table  5  The average retrieval precision (%)

    检索精度 ZM PZM OFMM RIUT
    BEP 36.10 33.23 32.39 37.79
    下载: 导出CSV
  • [1] Teague M R. Image analysis via the general theory of moments. Journal of the Optical Society of America, 1980, 70(8): 920-930 doi: 10.1364/JOSA.70.000920
    [2] Teh C H, Chin R T. On image analysis by the methods of moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(4): 496-513 doi: 10.1109/34.3913
    [3] Kan C, Srinath M D. Invariant character recognition with Zernike and orthogonal Fourier-Mellin moments. Pattern Recognition, 2002, 35(1): 143-154 doi: 10.1016/S0031-3203(00)00179-5
    [4] Ghosal S, Mehrotra R. Detection of composite edges. IEEE Transactions on Image Processing, 1994, 3(1): 14-25 doi: 10.1109/83.265977
    [5] 高世一, 赵明扬, 张雷, 邹媛媛.基于Zernike正交矩的图像亚像素边缘检测算法改进.自动化学报, 2008, 34(9): 1163-1168 http://www.aas.net.cn/CN/abstract/abstract17979.shtml

    Gao Shi-Yi, Zhao Ming-Yang, Zhang Lei, Zou Yuan-Yuan. Improved algorithm about subpixel edge detection of image based on Zernike orthogonal moments. Acta Automatica Sinica, 2008, 34(9): 1163-1168 http://www.aas.net.cn/CN/abstract/abstract17979.shtml
    [6] Wang L Z, Healey G. Using Zernike moments for the illumination and geometry invariant classification of multispectral texture. IEEE Transactions on Image Processing, 1998, 7(2): 196-203 doi: 10.1109/83.660996
    [7] Chen Z, Sun S K. A Zernike moment phase-based descriptor for local image representation and matching. IEEE Transactions on Image Processing, 2010, 19(1): 205-219 doi: 10.1109/TIP.2009.2032890
    [8] Flusser J, Suk T, Zitova B. Moments and Moment Invariants in Pattern Recognition. UK: John Wiley & Sons, 2009.
    [9] Sheng Y L, Shen L X. Orthogonal Fourier-Mellin moments for invariant pattern recognition. Journal of the Optical Society of America A, 1994, 11(6): 1748-1757 doi: 10.1364/JOSAA.11.001748
    [10] Chong C W, Raveendran P, Mukundan R. A comparative analysis of algorithms for fast computation of Zernike moments. Pattern Recognition, 2003, 36(3): 731-742 doi: 10.1016/S0031-3203(02)00091-2
    [11] Shu H Z, Luo L M, Coatrieux J L. Moment-based approaches in imaging part 3: computational considerations. IEEE Engineering in Medicine and Biology Magazine, 2008, 27(3): 89-91 doi: 10.1109/MEMB.2008.918690
    [12] Li Z M, Men X P, Li H. 3D model retrieval based on U system rotation invariant moments. In: Proceedings of the 2nd International Conference on Pervasive Computing and Applications. Birmingham: IEEE, 2007. 183-188
    [13] 刘玉杰, 李宗民, 李华, 齐东旭.三维U系统矩与三维模型检索.计算机辅助设计与图形学学报, 2006, 18(8): 1111-1116 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJF200608004.htm

    Liu Yu-Jie, Li Zong-Min, Li Hua, Qi Dong-Xu. 3D U system moment and 3D model retrieval. Journal of Computer-Aided Design & Computer Graphics, 2006, 18(8): 1111-1116 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJF200608004.htm
    [14] 陈伟, 张晓婷.正交旋转不变V矩及其在图像重建中的应用.自动化学报, 2015, 41(2): 376-385 http://www.aas.net.cn/CN/abstract/abstract18616.shtml

    Chen Wei, Zhang Xiao-Ting. Orthogonal rotation-invariant V moments and application to image reconstruction. Acta Automatica Sinica, 2015, 41(2): 376-385 http://www.aas.net.cn/CN/abstract/abstract18616.shtml
    [15] Feng Y Y, Qi D X. A sequence of piecewise orthogonal polynomials. SIAM Journal of Mathematical Analysis, 1984, 15: 834-844 doi: 10.1137/0515063
    [16] 齐东旭, 宋瑞霞, 李坚.非连续正交函数.北京:科学出版社, 2011.

    Qi Dong-Xu, Song Rui-Xia, Li Jian. Discontinuous Orthogonal Functions. Beijing: Scientific Press, 2011.
    [17] 齐东旭, 陶尘钧, 宋瑞霞, 马辉, 孙伟, 蔡占川.基于正交完备U-系统的参数曲线图组表达.计算机学报, 2006, 29(5): 778-785 http://mall.cnki.net/magazine/article/jsjx200605012.htm

    Qi Dong-Xu, Tao Chen-Jun, Song Rui-Xia, Ma Hui, Sun Wei, Cai Zhan-Chuan. Representation for a group of parametric curves based on the orthogonal complete U-system. Chinese Journal of Computers, 2006, 29(5): 778-785 http://mall.cnki.net/magazine/article/jsjx200605012.htm
    [18] 蔡占川, 孙伟, 齐东旭.基于正交完备U-系统的图形分类与识别方法.软件学报, 2006, 17(增刊): 21-27 http://www.oalib.com/paper/5071117

    Cai Zhan-Chuan, Sun Wei, Qi Dong-Xu. A classification and recognition method for planar figures based on complete orthogonal U-system. Journal of Software, 2006, 17(Suppl.): 21-27 http://www.oalib.com/paper/5071117
    [19] 丁玮, 闫伟齐, 齐东旭.基于U系统的数字图象水印技术.中国图象图形学报, 2001, 6(6): 552-557 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200106007.htm

    Ding Wei, Yan Wei-Qi, Qi Dong-Xu. Digital image watermarking based on U-system. Journal of Image and Graphics, 2001, 6(6): 552-557 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200106007.htm
    [20] 熊刚强, 余建德, 熊昌镇, 齐东旭. U-正交变换的可逆实现及其图像无损编码.计算机研究与发展, 2012, 49(4): 856-863 http://mall.cnki.net/magazine/Article/JFYZ201204029.htm

    Xiong Gang-Qiang, Yu Jian-De, Xiong Chang-Zhen, Qi Dong-Xu. Reversible factorization of U orthogonal transform and image lossless coding. Journal of Computer Research and Development, 2012, 49(4): 856-863 http://mall.cnki.net/magazine/Article/JFYZ201204029.htm
    [21] Abu-Mostafa Y S, Psaltis D. Recognitive aspects of moment invariants. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(6): 698-706 http://cn.bing.com/academic/profile?id=2035062046&encoded=0&v=paper_preview&mkt=zh-cn
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  2164
  • HTML全文浏览量:  224
  • PDF下载量:  1089
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-12
  • 录用日期:  2016-03-10
  • 刊出日期:  2016-09-01

目录

    /

    返回文章
    返回