2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于马尔科夫随机场的散乱点云全局特征提取

张靖 周明全 张雨禾 耿国华

张靖, 周明全, 张雨禾, 耿国华. 基于马尔科夫随机场的散乱点云全局特征提取. 自动化学报, 2016, 42(7): 1090-1099. doi: 10.16383/j.aas.2016.c150627
引用本文: 张靖, 周明全, 张雨禾, 耿国华. 基于马尔科夫随机场的散乱点云全局特征提取. 自动化学报, 2016, 42(7): 1090-1099. doi: 10.16383/j.aas.2016.c150627
ZHANG Jing, ZHOU Ming-Quan, ZHANG Yu-He, GENG Guo-Hua. Global Feature Extraction from Scattered Point Clouds Based on Markov Random Field. ACTA AUTOMATICA SINICA, 2016, 42(7): 1090-1099. doi: 10.16383/j.aas.2016.c150627
Citation: ZHANG Jing, ZHOU Ming-Quan, ZHANG Yu-He, GENG Guo-Hua. Global Feature Extraction from Scattered Point Clouds Based on Markov Random Field. ACTA AUTOMATICA SINICA, 2016, 42(7): 1090-1099. doi: 10.16383/j.aas.2016.c150627

基于马尔科夫随机场的散乱点云全局特征提取

doi: 10.16383/j.aas.2016.c150627
基金项目: 

陕西省教育厅科研专项 2013JK1180

国家自然科学基金 61373117

高等学校博士学科点专项科研基金 20136101110019

国家自然科学基金 61305032

详细信息
    作者简介:

    张靖西北大学信息科学与技术学院硕士研究生.主要研究方向为图像处理, 可视化技术.E-mail:zj18710812436@163.com

    张雨禾西北大学信息科学与技术学院博士研究生.主要研究方向为计算机图形图像处理与可视化技术.E-mail:zhangyuhe0601@126.com

    耿国华西北大学信息科学与技术学院教授.主要研究方向为智能信息处理, 数据库与知识库, 图形图像处理.E-mail:ghgeng@nwu.edu.cn

    通讯作者:

    周明全北京师范大学信息科学与技术学院教授.主要研究方向为虚拟现实与可视化技术, 智能信息处理, 数据库与知识库, 图形图像处理.本文通信作者.E-mail:mqzhou@nwu.edu.cn

Global Feature Extraction from Scattered Point Clouds Based on Markov Random Field

More Information
    Author Bio:

    Master student at the College of Information Science and Technology, Northwestern University. Her research interest covers computer graphics and visualization

    Ph. D. candidate at the College of Information Science and Technology, Northwestern University. Her research interest covers computer graphics and visualization

    Ph. D. candidate at the College of Information Science and Technology, Northwestern University. Her research interest covers computer graphics and visualization

    Corresponding author: ZHOU Ming-Quan Professor at the College of Information Science and Technology, Beijing Normal University. His research interest covers virtual reality and visualization technology, intelligent information processing, database and knowledge base, graphics and image processing. Corresponding author of this paper
  • 摘要: 为了精确提取点云数据中的特征信息,针对激光扫描获取的三维散乱点云数据,提出一种基于马尔科夫随机场(Markov random field, MRF)的散乱点云特征提取方法.首先,根据散乱点的曲率估计及阈值初始化点标号并判定稳定点,将稳定点标记存储在数组中;然后,将优化不稳定点的标号问题转化为随机场标号的能量函数问题,引用贝叶斯估计求后验概率分布函数及MAP-MRF(Maximum a posteriori-Markov random field)框架归约得到目标函数;最后,根据图割法α-expansion算法,利用标号调整过程中标号集相对能量变化得到不稳定点的最优标号集,将其与存储稳定点的数组综合,根据点标号提取特征点.实验结果表明,该方法简单、高效、无需人工调参,能够依据全局能量的变化自适应提取特征,特征提取结果令人满意.
  • 图  1  本文方法流程图

    Fig.  1  The flowchart of our method

    图  2  兵马俑1号碎片特征提取

    Fig.  2  Feature extraction of Terracotta Army 1

    图  3  兵马俑2号碎片特征提取

    Fig.  3  Feature extraction of Terracotta Army 2

    图  4  兵马俑3号碎片特征提取

    Fig.  4  Feature extraction of Terracotta Army 3

    图  5  Bunny模型特征提取

    Fig.  5  Feature extraction of Bunny model

    图  6  Fandisk模型特征提取

    Fig.  6  Feature extraction of Fandisk model

    图  7  Dragon模型特征提取

    Fig.  7  Feature extraction of Dragon model

    图  8  带噪声模型提取特征点数对比

    Fig.  8  Fandisk feature extraction with different noise amplitude

    图  9  Bunny简化模型特征提取结果

    Fig.  9  Feature extraction of simplified Bunny model

    表  1  参数列表

    Table  1  The parameter list

    参数 取值 作用
    α 0.00001 保证两点间势能的正定性
    β 8.0 决定先验信息在MRF中所占比重
    m 20 m个近邻点, 用来判断稳定点
    L 2 标号数, 即分类个数
    下载: 导出CSV

    表  2  含噪声模型特征提取对比表

    Table  2  Comparison of feature points extracted with noise model

    点云名称 采样点数 噪声幅度(ldb) 特征点数
    15 115 0.000 2 478
    Fandisk 15 115 0.001 1 989
    15 115 0.003 1 664
    下载: 导出CSV

    表  3  算法时间效率对比表

    Table  3  Comparison table of algorithm time efficiency

    点云名称 采样点数 特征点数 时间耗费(s)
    本文算法 张量投票 阈值检测
    Bunny 34 863 3 428 6.36 7.34 8.89
    Fandisk 15 115 2 478 3.67 3.89 4.16
    Dragon 464 869 103 721 189.69 273.56 403.56
    下载: 导出CSV
  • [1] Daniels J, Ha L K, Ochotta T, Silva C T. Robust smooth feature extraction from point clouds. In:Proceedings of the 2007 IEEE International Conference on Shape Modeling and Applications. Lyon, France:IEEE, 2007. 123-136 http://cn.bing.com/academic/profile?id=2097874565&encoded=0&v=paper_preview&mkt=zh-cn
    [2] Demarsin K, Vanderstraeten D, Volodine T, Roose D. Detection of closed sharp feature lines in point clouds for reverse engineering applications. In:Proceedings of the 4th International Conference. Pittsburgh, PA, USA:Springer, 2006. 571-577 http://cn.bing.com/academic/profile?id=1546936719&encoded=0&v=paper_preview&mkt=zh-cn
    [3] 庞旭芳, 庞明勇, 肖春霞.点云模型谷脊特征的提取与增强算法.自动化学报, 2010, 36(8):1073-1083 doi: 10.3724/SP.J.1004.2010.01073

    Pang Xu-Fang, Pang Ming-Yong, Xiao Chun-Xia. An algorithm for extracting and enhancing valley-ridge features from point sets. Acta Automatica Sinica, 2010, 36(8):1073-1083 doi: 10.3724/SP.J.1004.2010.01073
    [4] Tombari F, Salti S, Stefano L D. Performance evaluation of 3D keypoint detectors. International Journal of Computer Vision, 2013, 102(1-3):198-220 doi: 10.1007/s11263-012-0545-4
    [5] Pauly M, Keiser R, Gross M. Multi-scale feature extraction on point-sampled surfaces. Computer Graphics Forum, 2003, 22(3):281-289 doi: 10.1111/cgf.2003.22.issue-3
    [6] Guo Y L, Bennamoun M, Sohel F, Lu M, Wan J W. 3D object recognition in cluttered scenes with local surface features:a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(11):2270-2287 doi: 10.1109/TPAMI.2014.2316828
    [7] Guo Y L, Bennamoun M, Sohel F, Lu M, Wan J W, Kwok N M. A comprehensive performance evaluation of 3D local feature descriptors. International Journal of Computer Vision, 2016, 116(1):66-89 doi: 10.1007/s11263-015-0824-y
    [8] Ho H T, Gibbins D. Curvature-based approach for multiscale feature extraction from 3D meshes and unstructured point clouds. IET Computer Vision, 2009, 3(4):201-212 doi: 10.1049/iet-cvi.2009.0044
    [9]
    [10] Jia J Y, Tang C K. Tensor voting for image correction by global and local intensity alignment. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(1):36-50 doi: 10.1109/TPAMI.2005.20
    [11] Tang C K, Medioni G. Inference of integrated surface, curve and junction descriptions from sparse 3D data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11):1206-1223 doi: 10.1109/34.730555
    [12] 吾守尔·斯拉木, 曹巨明.一种新的散乱点云尖锐特征提取方法.西安交通大学学报, 2012, 46(12):1-5 http://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201212002.htm

    Wushour S, Cao Ju-Ming. An extraction algorithm for sharp feature points from point clouds. Journal of Xi'an Jiaotong University, 2012, 46(12):1-5 http://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201212002.htm
    [13] 王丽辉, 袁保宗.三维散乱点云模型的特征点检测.信号处理, 2011, 27(6):932-938 http://www.cnki.com.cn/Article/CJFDTOTAL-XXCN201106023.htm

    Wang Li-Hui, Yuan Bao-Zong. Feature point detection for 3D scattered point cloud model. Signal Processing, 2011, 27(6):932-938 http://www.cnki.com.cn/Article/CJFDTOTAL-XXCN201106023.htm
    [14] Longjiang E, Waseem S, Willis A. Using a MAP-MRF model to improve 3D mesh segmentation algorithms. In:Proceedings of the 2013 IEEE Southeastcon. Jacksonville, FL:IEEE, 2013. 1-7 http://cn.bing.com/academic/profile?id=2030297784&encoded=0&v=paper_preview&mkt=zh-cn
    [15] Lavoué, Wolf C. Markov random fields for improving 3D mesh analysis and segmentation. In:Proceedings of the 1st Eurographics Conference on 3D Object Retrieval. Switzerland, Switzerland:Eurographics Association Aire-la-Ville, 2008. 25-32 http://cn.bing.com/academic/profile?id=2148126472&encoded=0&v=paper_preview&mkt=zh-cn
    [16] 卢孝新.基于马尔科夫随机场的三维网格模型分割算法研究[硕士学位论文], 哈尔滨工业大学, 中国, 2010 http://www.doc88.com/p-4307074442697.html

    Lu Xiao-Xin. Research on 3D Mesh Segmentation Algorithms Using Markov Random Filed[Master dissertation], Harbin Institute of Technology, China, 2010 http://www.doc88.com/p-4307074442697.html
    [17] 任然.基于Markov随机场的图像分割方法研究[硕士学位论文], 安徽工业大学, 中国, 2013 http://cdmd.cnki.com.cn/article/cdmd-10360-1013358758.htm

    Ren Ran. Research on Image Segmentation Method Based on Markov Random Field[Master dissertation]. Anhui University of Technology, China, 2013 http://cdmd.cnki.com.cn/article/cdmd-10360-1013358758.htm
    [18] Wang Xiao-Chao, Liu Xiu-Ping, Li Bao-Jun, Zhang Shao-Guang. Feature detection on point cloud via local reconstruction. Journal of Computer-Aided Design & Computer Graphics, 2013, 25(5):659-665

    Hoppe H, DeRose T, Duchamp T, McDonald J, Stuetzle W. Surface reconstruction from unorganized points. In:Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques. New York, NY, USA:ACM, 1992. 71-78
    [19] 王小超, 刘秀平, 李宝军, 张绍光.基于局部重建的点云特征点提取.计算机辅助设计与图形学学报, 2013, 25(5):659-665 http://cdmd.cnki.com.cn/Article/CDMD-10141-1013198858.htm

    Wang Xiao-Chao, Liu Xiu-Ping, Li Bao-Jun, Zhang ShaoGuang. Feature detection on point cloud via local reconstruction. Journal of Computer-Aided Design & Computer Graphics, 2013, 25(5): 659−665 http://cdmd.cnki.com.cn/Article/CDMD-10141-1013198858.htm
    [20] Cohen-Steiner D, Morvan J M. Restricted delaunay triangulations and normal cycle. In:Proceedings of the 19th Annual Symposium on Computational Geometry. New York, USA:ACM, 2003. 312-321 http://cn.bing.com/academic/profile?id=2093027094&encoded=0&v=paper_preview&mkt=zh-cn
    [21] Alexa M, Behr J, Cohen-Or D, Fleishman S, Levin D, Silva C T. Computing and rendering point set surfaces. IEEE Transactions on Visualization and Computer Graphics, 2003, 9(1):3-15 doi: 10.1109/TVCG.2003.1175093
    [22] Webber C, Hahmann S, Hagen H. Sharp feature detection in point clouds. In:Proceedings of the 2010 Shape Modeling International Conference. Aix-en-Provence, France:IEEE, 2010. 175-186 http://cn.bing.com/academic/profile?id=2131723805&encoded=0&v=paper_preview&mkt=zh-cn
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  2533
  • HTML全文浏览量:  359
  • PDF下载量:  2139
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-10
  • 录用日期:  2016-01-19
  • 刊出日期:  2016-07-01

目录

    /

    返回文章
    返回