2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合特征筛选与二次定位的快速压缩跟踪算法

耿磊 王学彬 肖志涛 张芳 吴骏 李月龙 苏静静

耿磊, 王学彬, 肖志涛, 张芳, 吴骏, 李月龙, 苏静静. 结合特征筛选与二次定位的快速压缩跟踪算法. 自动化学报, 2016, 42(9): 1421-1431. doi: 10.16383/j.aas.2016.c150603
引用本文: 耿磊, 王学彬, 肖志涛, 张芳, 吴骏, 李月龙, 苏静静. 结合特征筛选与二次定位的快速压缩跟踪算法. 自动化学报, 2016, 42(9): 1421-1431. doi: 10.16383/j.aas.2016.c150603
GENG Lei, WANG Xue-Bin, XIAO Zhi-Tao, ZHANG Fang, WU Jun, LI Yue-Long, SU Jing-Jing. Fast Compressive Tracking Algorithm Combining Feature Selection with Secondary Localization. ACTA AUTOMATICA SINICA, 2016, 42(9): 1421-1431. doi: 10.16383/j.aas.2016.c150603
Citation: GENG Lei, WANG Xue-Bin, XIAO Zhi-Tao, ZHANG Fang, WU Jun, LI Yue-Long, SU Jing-Jing. Fast Compressive Tracking Algorithm Combining Feature Selection with Secondary Localization. ACTA AUTOMATICA SINICA, 2016, 42(9): 1421-1431. doi: 10.16383/j.aas.2016.c150603

结合特征筛选与二次定位的快速压缩跟踪算法

doi: 10.16383/j.aas.2016.c150603
基金项目: 

高等学校博士学科点专项科研基金 20131201110001

国家自然科学基金 61302127

天津市科技支撑计划重点项目 14ZCZDGX00033

详细信息
    作者简介:

    耿磊 天津工业大学电子与信息工程学院副教授.2012年获得天津大学精密仪器与光电子工程学院博士学位.主要研究方向为图像处理与模式识别, 智能信号处理技术与系统, DSP系统研发.E-mail:genglei@tjpu.edu.cn

    王学彬 天津工业大学电子与信息工程学院教授. 2003年获得天津大学电子信息工程学院博士学位.主要研究方向为智能信号处理, 图像处理与模式识别.本文通信作者. E-mail: xiaozhitao@tjpu.edu.cn

    张芳:ZHANG Fang Associate professor at the School of Electronics and Information Engineering, Tianjin Polytechnic University. She received her Ph.D. degree from the School of Precision Instrument and Opto-Electronics Engineering, Tianjin University in 2009. Her research interest covers image processing and pattern recognition, and optical interference measurement technique. E-mail: hhzhangfang@126.com

    吴骏:WU Jun Associate professor at the School of Electronics and Information Engineering, Tianjin Polytechnic University. He received his Ph.D. degree from the School of Electronics and Information Engineering, Tianjin University in 2007. His research interest covers image processing and pattern recognition, and artificial neural network. E-mail: zhenkongwujun@163.com

    李月龙:LI Yue-Long Associate professor at the School of Computer Science and Software Engineering, Tianjin Polytechnic University. He received his Ph.D. degree in computer science from the School of Electronics Engineering and Computer Science, Peking University in 2012. He was an academic visitor in the University of York in 2015. His research interest covers computer vision, pattern recognition, shape extraction, and face recognition. E-mail: liyuelong@pku.edu.cn

    苏静静:SU Jing-Jing Master student at the School of Electronics and Information Engineering, Tianjin Polytechnic University. She received her bachelor degree from North China Institute of Aerospace Engineering in 2014. Her research interest covers pattern recognition, and machine learning. E-mail: 1065250074@qq.com

    通讯作者:

    肖志涛 天津工业大学电子与信息工程学院教授.2003年获得天津大学电子信息工程学院博士学位.主要研究方向为智能信号处理, 图像处理与模式识别.本文通信作者.E-mail:xiaozhitao@tjpu.edu.cn

Fast Compressive Tracking Algorithm Combining Feature Selection with Secondary Localization

Funds: 

Specialized Research Fund for the Poctoral Program of Higher Education of China 20131201110001

National Natural Science Foundation of China 61302127

Key Projects of Tianjin Science and Technology Support Program 14ZCZDGX00033

More Information
    Author Bio:

    Associate professor at the School of Electronics and Information Engineering, Tianjin Polytechnic University. He received his Ph.D. degree from the School of Precision Instrument and Opto-Electronics Engineering, Tianjin University in 2012. His research interest covers image processing and pattern recognition, intelligent signal processing technology and system, DSP system research and development.E-mail:

    Master student at the School of Electronics and Information Engineering, Tianjin Polytechnic University. He received his bachelor degree from the School of Electronics and Information Engineering, Tianjin Polytechnic University in 2013. His research interest covers pattern recognition and machine learning. E-mail:

    天津工业大学电子与信息工程学院副教授. 2009年获得天津大学精密仪器与光电子工程学院博士学位.主要研究方向为图像处理与模式识别, 光学干涉测量技术. E-mail:

    天津工业大学电子与信息工程学院副教授. 2007年获得天津大学电子信息工程学院博士学位.主要研究方向为图像处理与模式识别, 人工神经网络. E-mail:

    Corresponding author: XIAO Zhi-Tao Professor at the School of Electronics and Information Engineering, Tianjin Polytechnic University. He received his Ph.D. degree from the School of Electronics and Information Engineering, Tianjin University in 2003. His research interest covers intelligent signal processing, image processing and pattern recognition. Corresponding author of this paper. E-mail:xiaozhitao@tjpu.edu.cn
  • 摘要: 针对压缩跟踪算法易受遮挡影响和模型更新比较盲目的问题,提出结合特征筛选与二次定位的快速压缩跟踪算法(Fast compressive tracking algorithm combining feature selection with secondary localization,FSSL-CT).首先,对全局区域划分子区域,从中提取压缩特征,根据正、负样本估计出各个压缩特征在正、负类中的分布; 然后,使用自适应学习率结合正类更新阈值对分类器模型进行更新; 最后,将跟踪分为两个阶段,每个阶段在对应的搜索区域内采集候选样本,并从全部特征中筛选出部分优质特征加权构建分类器,通过分类候选样本最终完成目标跟踪.在8个公共测试序列和4个自制序列中与最近提出的两个代表性算法进行比较,本文算法在大多数测试序列中都具有最高的跟踪成功率和最低的平均中心误差,平均处理速度可以达到3.04毫秒/帧.实验结果表明,本文算法具有更好的抵抗短时遮挡的能力,更高的准确性和鲁棒性,以及良好的实时性.
  • 图  1  降维示意图

    Fig.  1  The diagram of dimensionality reduction

    图  2  B与分布的关系

    Fig.  2  Relationship between B and distribution

    图  3  子区域模板

    Fig.  3  Sub-region template

    图  4  二次定位示意图

    Fig.  4  The diagram of secondary localization

    图  5  精确度曲线

    Fig.  5  Precision plot

    图  6  Sylvester (第4、697、1184、1236帧)

    Fig.  6  Sylvester (Frames 4、697、1184、1236

    图  7  Jogging (第53、78、79、231帧)

    Fig.  7  Jogging (Frames 53、78、79、231)

    图  8  Tiger1 (第7、64、115、315帧)

    Fig.  8  Tiger1 (Frames 7、64、115、315)

    图  9  Hat (第36、295、429、515帧)

    Fig.  9  Hat (Frames 36、295、429、515)

    图  10  DayLight1 (第71、114、197、543帧)

    Fig.  10  DayLight1 (Frames 71、114、197、543)

    表  1  各算法跟踪成功率比较

    Table  1  Comparison of the tracking success rate of different algorithms

    视频序列 FSSL-CT (\%) CT/原文(\%) FCT/原文(\%)
    Jogging 95.76 22.47/— 22.14/—
    Girl 85.00 65.40/78 52.20/—
    Shaking 81.91 85.20/92 93.42/97
    FleetFace 90.24 76.80/— 67.60/—
    KiteSurf 98.80 70.23/68 57.14/—
    Tiger1 71.75 64.40/78 52.82/52
    Sylvester 86.39 80.29/75 69.29/77
    FaceOcc2 90.02 96.55/100 89.16/—
    Hat 98.00 83.04/— 89.90/—
    DayLight1 100.00 48.90/— 76.55/—
    DayLight2 100.00 91.78/— 100.00/—
    Night 100.00 77.56/— 100.00/—
    下载: 导出CSV

    表  2  各算法平均中心误差比较(像素)

    Table  2  Comparison of mean center error of different algorithms (pixel)

    视频序列 FSSL-CT CT/原文 FCT/原文
    Jogging 12.07 94.48/— 93.59/—
    Girl 5.66 8.31/21 12.74/—
    Shaking 11.78 13.20/9 10.70/14
    FleetFace 16.70 52.50/— 54.72/—
    KiteSurf 2.24 6.12/9 13.93/—
    Tiger1 22.40 25.35/10 35.59/23
    Sylvester 9.94 16.56/9 20.70/9
    FaceOcc2 12.57 11.78/10 16.10/—
    Hat 8.81 18.09/— 11.19/—
    DayLight1 9.89 25.70/— 19.54/—
    DayLight2 6.69 15.91/— 8.90/—
    Night 6.16 14.00/— 9.53/—
    下载: 导出CSV

    表  3  各算法计算次数及相关参数(次)

    Table  3  Calculation times and related parameters of different algorithms (times)

    参数 FSSL-CT CT/原文 FCT/原文
    m1 81 1961 121
    n1 40 50 100
    m2 81 0 317
    n2 80 0 100
    N 9720 98050 43800
    下载: 导出CSV

    表  4  各算法运行速度比较(毫秒/帧)

    Table  4  Comparison of operation speed of different algorithms (ms/frame)

    视频序列 FSSL-CT CT FCT
    Jogging 3.04 18.10 11.34
    Girl 2.63 18.85 11.20
    Shaking 3.31 19.95 12.39
    FleetFace 3.09 21.35 12.45
    KiteSurf 2.97 21.39 11.89
    Tiger1 3.41 21.57 12.85
    Sylvester 2.72 20.86 12.36
    FaceOcc2 3.06 21.38 12.75
    Hat 2.88 19.24 11.43
    DayLight1 3.17 20.26 11.49
    DayLight2 3.26 21.43 11.92
    Night 2.98 21.36 11.76
    平均处理时间 3.04 20.48 11.99
    下载: 导出CSV
  • [1] Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577 doi: 10.1109/TPAMI.2003.1195991
    [2] Bradski G R. Real time face and object tracking as a component of a perceptual user interface. In: Proceedings of the 4th IEEE Workshop on Applications of Computer Vision. Princeton, USA: IEEE, 1998. 214-219
    [3] Huang S L, Hong J X. Moving object tracking system based on camshift and Kalman filter. In: Proceedings of the 2011 International Conference on Consumer Electronics, Communications and Networks. Xianning, China: IEEE, 2011. 1423-1426
    [4] Vadakkepat P, Liu J. Improved particle filter in sensor fusion for tracking randomly moving object. IEEE Transactions on Instrumentation and Measurement, 2006, 55(5): 1823-1832 doi: 10.1109/TIM.2006.881569
    [5] 王智灵, 陈宗海, 徐萧萧, 吴亮.基于蛙眼视觉特性的运动目标模糊化区域理解跟踪方法.自动化学报, 2009, 35(8): 1048-1054 doi: 10.3724/SP.J.1004.2009.01048

    Wang Zhi-Ling, Chen Zong-Hai, Xu Xiao-Xiao, Wu Liang. A fuzzy region understanding tactic for object tracking based on frog's vision characteristic. Acta Automatica Sinica, 2009, 35(8): 1048-1054 doi: 10.3724/SP.J.1004.2009.01048
    [6] 李智勇, 何霜, 刘俊敏, 李仁发.基于蛙眼R3细胞感受野模型的运动滤波方法.自动化学报, 2015, 41(5): 981-990 http://www.aas.net.cn/CN/abstract/abstract18672.shtml

    Li Zhi-Yong, He Shuang, Liu Jun-Min, Li Ren-Fa. Motion filtering by modelling R3 cell's receptive field in frog eyes. Acta Automatica Sinica, 2015, 41(5): 981-990 http://www.aas.net.cn/CN/abstract/abstract18672.shtml
    [7] 刘伟峰, 柴中, 文成林.基于随机采样的多量测目标跟踪算法.自动化学报, 2013, 39(2): 168-178 http://www.aas.net.cn/CN/abstract/abstract17858.shtml

    Liu Wei-Feng, Chai Zhong, Wen Cheng-Lin. Multi-measurement target tracking by using random sampling approach. Acta Automatica Sinica, 2013, 39(2): 168-178 http://www.aas.net.cn/CN/abstract/abstract17858.shtml
    [8] Avidan S. Support vector tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(8): 1064-1072 doi: 10.1109/TPAMI.2004.53
    [9] Yang F, Lu H C, Yang M H. Robust superpixel tracking. IEEE Transactions on Image Processing, 2014, 23(4): 1639-1651 doi: 10.1109/TIP.2014.2300823
    [10] Collins R T, Liu Y X, Leordeanu M. Online selection of discriminative tracking features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1631-1643 doi: 10.1109/TPAMI.2005.205
    [11] Babenko B, Yang M H, Belongie S. Robust object tracking with online multiple instance learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632 doi: 10.1109/TPAMI.2010.226
    [12] Zhang T Z, Ghanem B, Liu S, Ahuja N. Robust visual tracking via multi-task sparse learning. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA: IEEE, 2012. 2042-2049
    [13] Zhong W, Lu H C, Yang M H. Robust object tracking via sparse collaborative appearance model. IEEE Transactions on Image Processing, 2014, 23(5): 2356-2368 doi: 10.1109/TIP.2014.2313227
    [14] Wang D, Lu H C, Yang M H. Online object tracking with sparse prototypes. IEEE Transactions on Image Processing, 2013, 22(1): 314-325 doi: 10.1109/TIP.2012.2202677
    [15] Zhang K H, Zhang L, Yang M H. Real-time compressive tracking. In: Proceedings of the 2012 European Conference on Computer Vision. Florence, Italy: Springer Berlin Heidelberg, 2012. 864-877
    [16] 石武祯, 宁纪锋, 颜永丰.压缩感知跟踪中的特征选择与目标模型更新.中国图象图形学报, 2014, 19(6): 932-939 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201406014.htm

    Shi Wu-Zhen, Ning Ji-Feng, Yan Yong-Feng. Feature selection and target model updating in compressive tracking. Journal of Image and Graphics, 2014, 19(6): 932-939 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201406014.htm
    [17] 毛征, 袁建建, 吴珍荣, 曲劲松, 李红岩.基于在线特征选择的实时压缩跟踪.光学精密工程, 2014, 22(3): 730-736 doi: 10.3788/OPE.

    Mao Zheng, Yuan Jian-Jian, Wu Zhen-Rong, Qu Jin-Song, Li Hong-Yan. Real-time compressive tracking based on online feature selection. Optics and Precision Engineering, 2014, 22(3): 730-736 doi: 10.3788/OPE.
    [18] 钟权, 周进, 吴钦章, 王辉, 雷涛.一种改进的实时压缩跟踪算法.光电工程, 2014, 41(4): 1-8 http://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201404002.htm

    Zhong Quan, Zhou Jin, Wu Qin-Zhang, Wang Hui, Lei Tao. An improved real-time compressive tracking. Opto-Electronic Engineering, 2014, 41(4): 1-8 http://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201404002.htm
    [19] 罗会兰, 钟宝康, 孔繁胜.结合目标预测位置的压缩跟踪.中国图象图形学报, 2014, 19(6): 875-885 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201406008.htm

    Luo Hui-Lan, Zhong Bao-Kang, Kong Fan-Sheng. Object tracking algorithm by combining the predicted target position with compressive tracking. Journal of Image and Graphics, 2014, 19(6): 875-885 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201406008.htm
    [20] Zhang K H, Zhang L, Yang M H. Fast compressive tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10): 2002-2015 doi: 10.1109/TPAMI.2014.2315808
    [21] Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift. In: Proceedings of the 2000 IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, USA: IEEE, 2000, 2: 142-149
    [22] Wu Y, Lim J, Yang M H. Online object tracking: a benchmark. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA: IEEE, 2013. 2411-2418
    [23] Everingham M, Van Gool L, Williams C L I, Winn J, Zisserman A. The pascal visual object classes (VOC) challenge. International Journal of Computer Vision, 2010, 88(2): 303-338 doi: 10.1007/s11263-009-0275-4
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  2197
  • HTML全文浏览量:  253
  • PDF下载量:  846
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-08
  • 录用日期:  2016-01-23
  • 刊出日期:  2016-09-01

目录

    /

    返回文章
    返回