2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向产品评论分析的短文本情感主题模型

熊蜀峰 姬东鸿

李晓航, 朱芳来. 延迟不确定马尔科夫跳变系统的执行器和传感器故障同时估计方法. 自动化学报, 2017, 43(1): 72-82. doi: 10.16383/j.aas.2017.c150389
引用本文: 熊蜀峰, 姬东鸿. 面向产品评论分析的短文本情感主题模型. 自动化学报, 2016, 42(8): 1227-1237. doi: 10.16383/j.aas.2016.c150591
LI Xiao-Hang, ZHU Fang-Lai. Simultaneous Estimation of Actuator and Sensor Faults for Uncertain Time-delayed Markovian Jump Systems. ACTA AUTOMATICA SINICA, 2017, 43(1): 72-82. doi: 10.16383/j.aas.2017.c150389
Citation: XIONG Shu-Feng, JI Dong-Hong. A Short Text Sentiment-topic Model for Product Review Analysis. ACTA AUTOMATICA SINICA, 2016, 42(8): 1227-1237. doi: 10.16383/j.aas.2016.c150591

面向产品评论分析的短文本情感主题模型

doi: 10.16383/j.aas.2016.c150591
基金项目: 

国家自然科学基金 61373108, 61173062, 61133012

国家社会科学重大招标计划项目 11&ZD189

详细信息
    作者简介:

    熊蜀峰 武汉大学计算机学院博士研究生,平顶山学院讲师.主要研究方向为自然语言处理,机器学习和观点挖掘.E-mail:xsf@whu.edu.cn

    通讯作者:

    姬东鸿 武汉大学计算机学院教授.主要研究方向为自然语言处理,数据挖掘和生物信息处理.本文通信作者.E-mail:dhji@whu.edu.cn

A Short Text Sentiment-topic Model for Product Review Analysis

Funds: 

National Natural Science Foundation of China 61373108, 61173062, 61133012

The Major Program of the National Social Science Foundation of China 11&ZD189

More Information
    Author Bio:

    Ph. D. candidate at the Computer School of Wuhan University and lecturer at PingDingShan University. His research interest covers natural language processing, machine learning, and opinion mining.E-mail:

    Corresponding author: JI Dong-Hong Professor at the Computer School of Wuhan University. His research interest covers natural language processing, data mining, and biological information processing. Corresponding author of this paper.
  • 摘要: 情感主题联合生成模型已经成功应用于网络评论分析.然而,随着智能终端设备的广泛应用,由于屏幕及输入限制,用户书写的评论越来越短,我们不得不面对短评论中的文本稀疏问题.本文提出了一个针对短文本的联合情感--主题模型SSTM(Short-text sentiment-topic model)来解决稀疏性问题.不同于一般主题模型中通常采用的基于文档产生过程的建模方法,我们直接对整个语料集合的产生过程建模.在产生文档集的过程中,我们每次采样一个词对,同一个词对中的词有相同的情感极性和主题.我们将SSTM模型应用于两个真实网络评论数据集.在三个实验任务中,通过定性分析验证了主题发现的有效性,并与经典方法进行定量对比,SSTM模型的文档级情感分类性能也有较大提升.
  • 马尔科夫跳变系统是一类包含连续时间状态变量和离散时间模态变量的混杂系统.在马尔科夫跳变系统中,离散的模态变量是一个在连续时间下具有离散模态的马尔科夫过程,其模态值取自一个有限的集合.马尔科夫跳变系统被广泛应用于那些存在突发故障或环境变化的系统中,包括电力系统、航空航天系统、制造业系统和网络控制系统等[1].近些年,马尔科夫跳变系统逐渐成为了控制理论领域的一个研究热点,主要研究包括稳定性与控制设计[2-15]、故障检测与容错控制[3, 16-20]、滤波及状态和故障估计[3, 7, 9, 16, 20, 21-24].在针对马尔科夫跳变系统估计问题的研究中,文献[9]针对奇异马尔科夫跳变系统设计了观测器.文献[16]基于描述系统的方法,对一类具有延迟和非线性项的马尔科夫跳变系统设计了滑模观测器,给出了系统状态和传感器故障的估计,并将其应用到容错控制中.文献[20]针对一类具有伊藤型随机运动的马尔科夫跳变系统处理了容错控制问题.针对无法在线实时获得系统模态的广义马尔科夫跳变系统,文献[21]研究了部分模态依赖观测器和控制器设计问题.文献[7, 22]考虑了状态估计和滤波问题.文献[23]针对具有非线性扰动的描述马尔科夫跳变系统设计全维和降维观测器来估计系统的状态.文献[24]基于自适应观测器对马尔科夫跳变系统讨论了故障估计问题.在以上的介绍中,文献[7, 21-23]考虑的是马尔科夫跳变系统不具有执行器和传感器的情形,文献[24]只考虑了执行器故障的估计问题,虽然文献[16, 20]基于滑模观测器给出了执行器和传感器故障的同时估计,但是需要事先获知故障以及其导数的上界.由此可见,目前国内外对同时具有执行器和传感器故障的马尔科夫跳变系统进行状态、执行器故障和传感器故障同时估计的研究并不多见.此外,在实际系统中,延迟环节往往是导致系统不稳定的因素之一,状态转移概率也往往是在线估计获得的,具有一些不确定性,因此对于具有延迟环节和状态转移概率不确定性的情形进行相关议题的讨论具有重大意义.

    综上所述,本文针对一类具有不确定状态转移概率的延迟马尔科夫跳变系统设计了自适应观测器来同时估计执行器和传感器故障.本文的贡献在于:1) 在状态转移概率不确定的情形下,对一类具有延迟环节和参数不确定性的马尔科夫跳变系统给出了执行器和传感器故障的同时估计;2) 本文假设状态转移概率矩阵是其估计值且具有不确定性,相较于基于精确状态转移概率矩阵的文献[16, 20]更具实用性;3) 本文设计过程中无需事先获知执行器或传感器故障的任何信息,比如,文献[16]要求传感器上界已知等,因此本文具有更小的保守性.

    考虑如下在概率空间$({ \rm {\Omega }},{ {F}},{{P}})$上具有参数不确定性的线性延迟马尔科夫跳变系统

    $\left\{ \begin{array}{*{35}{l}} \dot{x}(t)=(A({{r}_{t}})+\Delta A({{r}_{t}}))x(t)~+ \\ ~~~~~~~{{A}_{d}}({{r}_{t}})x(t-\tau )+B({{r}_{t}})u(t)+D({{r}_{t}}){{f}_{a}}(t) \\ y(t)=C({{r}_{t}})x(t)+G({{r}_{t}}){{f}_{s}}(t) \\ x(t)=\phi (t),t\in [\begin{matrix} -\tau &0 \\ \end{matrix}] \\ \end{array} \right.$

    (1)

    其中,${\rm{\Omega }}$是样本空间,${ {F}}$是样本空间上的 $\sigma$-代数子集,${ {P}}$为概率测度. ${\pmb x}(t) \in {{\bf R}^n}$,${\pmb u}(t)\in {{\bf R}^m}$分别为系统状态和控制输入. ${{\pmb f}_a}(t) \in{{\bf R}^q}$和${{\pmb f}_s}(t) \in {{\bf R}^w}$分别是未知的执行器故障和传感器故障[16, 20].$\left\{ {{r_t}} \right\}$是在有限集${ S} = \left\{ {1,\cdots,s}\right\}$内取值的连续时间离散状态的马尔科夫过程,它具有如下状态转移概率:

    ${P_r}({r_{t + h}} = j|{r_t} = i) = \left\{ \begin{array}{l}{\pi _{ij}}h + o(h),{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}~~~~~ i \ne j\\1 + {\pi _{ii}}h + o(h),{\kern 1pt} {\kern 1pt} {\kern 1pt} i = j\end{array} \right.$

    其中$h > 0$,$\mathop {\lim }_{h \to 0} {{o(h)}}/{h} = 0$,${\pi _{ij}}$是从时间$t$处状态$i$到时间$t + h$处状态$j$的状态转移概率,且有${\pi _{ii}} = -\sum\nolimits_{j = 1,i \ne j}^s {{\pi _{ij}}} $,${\pi _{ij}}\ge 0$. 定义$\Pi = \left\{ {{\pi _{ij}}}\right\}$为未知的状态转移概率矩阵,且满足

    $\Pi \subseteq \left\{ \hat{\Pi }+\Delta \Pi :\left| \Delta {{\pi }_{ij}} \right|\le {{\kappa }_{ij}},{{\kappa }_{ij}}\ge 0,i\ne j,i,j\in S \right\}$

    其中~$\hat \Pi = \left\{ {{{\hat \pi }_{ij}}}\right\}$是已知的常数矩阵,${\hat \pi _{ij}} \ge 0,~i \ne j,$$i,j \in { S}$ 是${\pi _{ij}}$的估计值,$\Delta \Pi = \left\{ {\Delta {\pi _{ij}}} \right\}$表示状态转移速率矩阵中的不确定性,$\Delta {\pi _{ij}}$为速率估计误差,并且在有限集$[{\begin{array}{*{20}{c}}{ - {\kappa _{ij}}}&{{\kappa _{ij}}}\end{array}}]$中取值,对于$i \in { S}$,有${\hat \pi _{ii}}=-\sum\nolimits_{j = 1,i \ne j}^s {{{\hat \pi }_{ij}}}$和$\Delta {\pi _{ii}} = - \sum\nolimits_{j = 1,i \ne j}^s {\Delta {\pi _{ij}}} $. $A({r_t})$,${A_d}({r_t})$,$B({r_t})$,$D({r_t})$,$C({r_t})$和$G({r_t})$是具有适当维数关于${r_t}$的矩阵函数. $\Delta A({r_t})$是表示参数不确定性的未知矩阵,并假设$\Delta A({r_t}) =M({r_t})F({r_t},t)H({r_t})$,其中$M({r_t})$和$H({r_t})$是已知的常矩阵,$F({r_t},t)$是未知的时变矩阵满足${F^{\rm T}}({r_t},t)F({r_t},t)\le I$. $\tau > 0$是已知的延迟时间.函数${\pmb \phi}(t)$是在$[{\begin{array}{*{20}{c}} { - \tau }&0\end{array}}]$上的初始状态,系统初始模态为${r_0}$.假设${G(r_t)}$是列满秩.

    注 1.本文假设${G(r_t)}$是列满秩是具有一般性的,许多关于传感器故障估计的文献都用到了此假设\[16, 20, 25].关于参数不确定性$\Delta A({r_t}) =M({r_t})F({r_t},t)H({r_t})$的假设也在针对不确定性系统问题的研究中被频繁应用[26-27].

    为了表示方便,我们定义对任意矩阵${ \Psi}$有${ \Psi}({r_t} = i) = {{\Psi}_i}$,${\kern 1pt} i \in {\bf S}$,任意变量${\pmb \chi} (t)$有${\pmb \chi}(t) = {\pmb \chi}$.

    定义 1. 定义变量${\pmb \Im} = \{ {\pmb \Im} (t)\}\in {L_2}[\begin{array}{*{20}{c}} 0&\infty\end{array})$,则它的${L_2}$范数为${\left\| {\pmb \Im} \right\|_{_2}} = \sqrt {\int_0^\infty {{\pmb \Im} {{(t)}^{\rm T}}{\pmb \Im} (t){\rm d}t} } $.

    定义 2[25]. 对于$\tau > 0$,如果对于${\pmb u}\equiv {\bf 0}$,${\Delta}A_i \equiv {\bf 0}$,${\pmb f}_a \equiv{\bf 0}$,${\pmb f}_s \equiv {\bf 0}$,初始条件$({{\pmb x}_0},{r_0})$和所有定义在$[{\begin{array}{*{20}{c}} { - \tau }&0\end{array}}]$上的有限函数${\pmb \phi}(t)$,有

    $\left[{\mathop{\rm E}\nolimits} \int_0^\infty {{{\pmb x}^{\rm T}}(t){\pmb x}}(t){\rm d}t|{{\pmb x}_0},{\pmb \phi}(t),{r_0}\right] \le \infty $

    其中${\mathop{\rm E}\nolimits}$表示数学期望,则系统(1) 是随机稳定的.

    定义 3[28].对马尔科夫跳变系统形如

    \begin{equation}\left\{\begin{array}{l}\dot {\pmb x}(t) = {A_i}{\pmb x}(t) + {B_i}{\pmb u}(t) + {B_{\omega i}}{\pmb \omega} (t)\\{\pmb z}_\omega(t) = {C_i}{\pmb x}(t) + {D_i}{\pmb u}(t) +{D_{\omega i}}{\pmb \omega} (t)\end{array} \right.\end{equation}

    (2)

    其中~${\pmb \omega}(t)$表示干扰. 如果对于$λ >0$,存在常数$M({{\pmb x}_0},{r_0})$且$M(0,{r_0}) = 0$,满足

    $\begin{array}{l}\Big[{\mathop{\rm E}\nolimits} \displaystyle \int_0^\infty {{{\pmb z}_{\omega}^{\rm T}}(t){\pmb z}_{\omega}(t){\rm d}t|{{\pmb x}_0},{r_0}{\Big]^{\frac{1}{2}}}} \le ~~~~~~~~~~~~~~~\\ ~~~~~~~~~~~~~~~~~~~~~~\gamma {[\left\| {{\pmb \omega} (t)} \right\|_2^2 + M({{\pmb x}_0},{r_0})]^{\frac{1}{2}}}\end{array}$

    则系统(2) 是随机稳定且具有${H_\infty }$干扰抑制指数$λ$.

    引理 1. 对于标量$\sigma > 0$和实矩阵${\Theta }_1$,${\Theta}_2$有

    ${{\Theta }_1 ^{\rm T}}{\Theta}_2 + {{\Theta}_2 ^{\rm T}}{\Theta }_1 \le {\sigma ^{ - 1}}{{\Theta }_1 ^{\rm T}}{\Theta }_1 + \sigma {{\Theta}_2 ^{\rm T}}{\Theta}_2 $

    引理 2. 令矩阵$U$,$V'$和$F'(t)$为任意适当的实数矩阵,其中$U$和$V'$为已知,$F'(t)$为未知且满足${F'^{\rm T}}(t)F'(t) \le I$,对于$\varepsilon> 0$,如下不等式

    $UF'(t)V' + {V'^{\rm T}}{F'^{\rm T}}(t){U^{\rm T}}\le \varepsilon U{U^{\rm T}} + {\varepsilon ^{ - 1}}{V'^{\rm T}}V'$

    是成立的.

    假设 1. ${{\pmb f}_a}$是可微的,且${\dot {\pmb f}_a} \in{L_2}[0\ \infty )$.

    注 2.本文所设计方法可以适用于任何有界连续的传感器故障和满足假设1的执行器故障,且设计过程不需要知道有关故障的任何信息,例如故障的上界[16]和故障导数的上界[20]等.在实际应用中,故障往往都是经过一个暂态的变化之后几乎保持不变的,即满足${\dot{\pmb f}_a} \in {L_2}[0\ \infty )$.相比于文献[29]中关于${\dot {\pmb f}_a}$有界的假设,文中对于执行器故障的假设1更具有一般性.

    为了能达到传感器故障和状态同时估计的目的,定义一个新的变量$\bar{\pmb x} = \left[{\begin{array}{*{20}{c}}{\pmb x}\\{{{\pmb f}_s}}\end{array}} \right] \in {{\bf R}^{n + w}}$,相应地,记${\bar A_i} = [{{A_i}}\ {{0_{n × w}}}]$,${\bar C_i} =[{{C_i}}\ {{G_i}}]$,$E =[{{I_n}}\ {{0_{n × w}}}]$.于是,系统(1) 可以写为

    \begin{equation}\left\{ \begin{array}{l}E\dot {\bar {\pmb x}} = {{\bar A}_i}\bar {\pmb x} + \Delta {A_i}{\pmb x} + {A_{di}}{\pmb x}(t - \tau )+ \\ ~~~~~~~~~~{B_i}{\pmb u} + {D_i}{{\pmb f}_a}\\{\pmb y} = {{\bar C}_i}\bar {\pmb x}\end{array} \right.\end{equation}

    (3)

    系统(3) 是一个广义描述系统,状态包括原系统的状态和传感器故障.如果能够针对系统(3) 设计一个观测器,就能够同时得到原系统的状态和传感器故障的估计.

    针对系统(3) ,本节将提出一种能同时估计系统状态、执行器和传感器故障的自适应观测器.

    设计如下自适应观测器系统

    \begin{equation}\left\{ \begin{array}{l}\dot {\pmb z} = {N_i}{\pmb z} + {L_i}{\pmb y} + {T_i}{B_i}{\pmb u}+ \\ ~~~~~~~~{T_i}{D_i}{{\hat {\pmb f}}_a} + {T_i}{A_{di}}\hat {\pmb x}(t - \tau )\\\hat {\bar {\pmb x}} = {\pmb z} + {Q_i}{\pmb y}\\{{\dot {\hat {\pmb f}}}_a} = {\Phi _i}({\pmb y} - \hat {\pmb y})\end{array} \right.\end{equation}

    (4)

    其中${\pmb z} \in {{\bf R}^{n + w}}$为观测器中间变量,$\hat {\bar {\pmb x}} = \left[{\begin{array}{*{20}{c}}{\hat {\pmb x}}\\{{{\hat {\pmb f}}_s}}\end{array}} \right]$为$\bar {\pmb x} = \left[{\begin{array}{*{20}{c}}{\pmb x}\\{{{\pmb f}_s}}\end{array}} \right]$的估计,${\hat {\pmb f}_a}$为执行器故障${{\pmb f}_a}$的估计,$\hat {\pmb x}(t - \tau )$为延迟状态${\pmb x}(t - \tau )$的估计. ${N_i}$,${L_i}$,${T_i}$,${Q_i}$和${\Phi _i}$为适当维数的待定矩阵.本文的主要目标就是求取矩阵${N_i}$,${L_i}$,${T_i}$,${Q_i}$和${\Phi _i}$使得系统(4) 可以在${H_\infty }$的意义下估计系统(3) 的状态,同时可以给出执行器故障${{\pmb f}_a}$在${H_\infty }$意义下的估计.

    因为${G_i}$是列满秩,我们可以得到$\left[{\begin{array}{*{20}{c}}E\\{{{\bar C}_i}}\end{array}} \right] = \left[{\begin{array}{*{20}{c}}{{I_n}}&{{0_{n × w}}}\\{{C_i}}&{{G_i}}\end{array}} \right]$也是列满秩的.因此存在矩阵${T_i} \in {{\bf R}^{(n + w) × n}}$和${Q_i} \in {{\bf R}^{(n + w) × p}}$满足

    \begin{equation}{T_i}E + {Q_i}{\bar C_i} = {I_{n + w}}\end{equation}

    (5)

    且其中一组特解为

    $\begin{align} &{{T}_{i}}={{\left[ \begin{matrix} E \\ {{{\bar{C}}}_{i}} \\ \end{matrix} \right]}^{-1}}\left[ \begin{array}{*{35}{l}} {{I}_{n}} \\ {{0}_{p\times n}} \\ \end{array} \right] \\ &{{Q}_{i}}={{\left[ \begin{matrix} E \\ {{{\bar{C}}}_{i}} \\ \end{matrix} \right]}^{-1}}\left[ \begin{array}{*{35}{l}} {{0}_{p\times n}} \\ {{I}_{p}} \\ \end{array} \right] \\ \end{align}$

    (6)

    其中"$-1$''为矩阵的Moore-Penrose逆.

    定义观测误差${\pmb { e}} = \bar {\pmb x} - \hat {\bar {\pmb x}}$,由系统(4) 中的第二式和式(5) 可得

    ${\pmb { e}} = \bar {\pmb x} -{\pmb z} - {Q_i}{\bar C_i}\bar {\pmb x} = ({I_{n + w}} -{Q_i}{\bar C_i})\bar {\pmb x} - {\pmb z} = {T_i}E\bar {\pmb x} -{\pmb z}$

    因此误差的动态方程为

    \begin{equation}\begin{array}{l}\dot {\pmb { e}} = {T_i}E\dot {\bar {\pmb x}} - \dot {\pmb z} =\\ ~~~~~~~~{T_i}{{\bar A}_i}\bar {\pmb x} + {T_i}\Delta {A_i}{\pmb x} + {T_i}{A_{di}}{\pmb x}(t - \tau ) + {T_i}{B_i}{\pmb u}+ \\ ~~~~~~~~{T_i}{D_i}{{\pmb f}_a} - {N_i}{\pmb z} - {L_i}{\pmb y}- \\ ~~~~~~~~{T_i}{B_i}{\pmb u} - {T_i}{D_i}{{\hat {\pmb f}}_a} - {T_i}{A_{di}}\hat {\pmb x}(t - \tau ) =\\ ~~~~~~~~ {T_i}{{\bar A}_i}\bar {\pmb x} + {T_i}\Delta {A_i}{\pmb x} + {T_i}{A_{di}}{\pmb x}(t - \tau )+ \\ ~~~~~~~~ {T_i}{B_i}{\pmb u} + {T_i}{D_i}{{\pmb f}_a} - {N_i}{\pmb z} - {L_i}{\pmb y}- \\ ~~~~~~~~{T_i}{B_i}{\pmb u} - {T_i}{D_i}{{\hat {\pmb f}}_a} - {T_i}{A_{di}}\hat {\pmb x}(t - \tau )+ \\ ~~~~~~~~ {N_i}{T_i}E\bar {\pmb x} - {N_i}{T_i}E\bar {\pmb x} =\\ ~~~~~~~~{N_i}{\pmb { e}} + ({T_i}{{\bar A}_i} - {L_i}{{\bar C}_i} - {N_i}{T_i}E)\bar {\pmb x}+ \\ ~~~~~~~~{T_i}{D_i}{{\tilde {\pmb f}}_a} + {T_i}{A_{di}}\tilde {\pmb x}(t - \tau ) + {T_i}\Delta {A_i}{\pmb x}\end{array}\end{equation}

    (7)

    其中${\tilde {\pmb f}_a} = {{\pmb f}_a} - {\hat {\pmb f}_a}$,$\tilde {\pmb x}(t - \tau ) = {\pmb x}(t - \tau ) - \hat {\pmb x}(t - \tau )$. 如果待定矩阵${N_i} \in {{\bf R}^{(n + w) × (n + w)}}$ 和${L_i} \in {{\bf R}^{(n + w) × p}}$满足

    \begin{equation}{T_i}{\bar A_i} - {L_i}{\bar C_i} - {N_i}{T_i}E = 0\end{equation}

    (8)

    则式(7) 可以化简为

    \begin{equation}\dot {\pmb { e}} = {N_i}{\pmb { e}} + {T_i}{D_i}{\tilde {\pmb f}_a} + {T_i}{A_{di}}\tilde {\pmb x}(t - \tau ) + {T_i}\Delta {A_i}{\pmb x}\end{equation}

    (9)

    不难发现满足式(8) 的一组解为

    \begin{equation}{N_i} = {T_i}{\bar A_i} - {K_i}{\bar C_i}\end{equation}

    (10)

    \begin{equation}{L_i} = {K_i} + {N_i}{Q_i}\end{equation}

    (11)

    其中${K_i}$为具有适当维数的任意矩阵.

    由系统(4) 中第三式和假设1可以得到

    \begin{equation}{\dot {\tilde{\pmb f}}_a}={\dot {\pmb f}_a} - {\Phi _i}{\bar C_i}{\pmb {e}}\end{equation}

    (12)

    为了能够方便地求取矩阵${K_i}$和${\Phi_i}$,定义一个新的变量${\pmb \zeta} = \left[{\begin{array}{*{20}{c}}{\pmb { e}}\\{{{\tilde {\pmb f}}_a}}\end{array}} \right] \in {{\bf R}^{n + w + q}}$,则误差方程(9) 和(12) 可以合并为

    \begin{equation}\dot {\pmb \zeta} = ({\hat A_i} - {\hat L_i}{\hat C_i}){\pmb \zeta} + {\hat D_i}{\pmb v} + {\hat A_{di}}{\pmb \zeta}(t - \tau ) + \Delta {\hat A_i}{\pmb x}\end{equation}

    (13)

    其中${\hat A_i} = \left[{\begin{array}{*{20}{c}}{{T_i}{{\bar A}_i}}&{{T_i}{D_i}}\\{{0_{q × (n + w)}}}&{{0_{q × q}}}\end{array}} \right]$,${\hat L_i} = \left[{\begin{array}{*{20}{c}}{{K_i}}\\{{\Phi _i}}\end{array}} \right]$,${\hat C_i} = \left[{\begin{array}{*{20}{c}}{{{\bar C}_i}}&{{0_{p × q}}}\end{array}} \right]$,${\hat D_i} = \left[{\begin{array}{*{20}{c}}{{0_{(n + w) × q}}}\\{{I_q}}\end{array}} \right]$,${\hat A_{di}} = \left[{\begin{array}{*{20}{c}}{{T_i}{{\bar A}_{di}}}&{{0_{(n + w) × q}}}\\{{0_{q × (n + w)}}}&{{0_{q × q}}}\end{array}} \right]$,$\Delta {\hat A_i} = {\hat M_i}{\hat F_i}(t){\hat N_i}$,${\bar A_{di}} = \left[{\begin{array}{*{20}{c}}{{A_{di}}}&{{0_{n × w}}}\end{array}} \right]$,${\hat M_i} = \left[{\begin{array}{*{20}{c}}{{T_i}{M_i}}&{{0_{(n + w) × 1}}}\\{{0_{q × 1}}}&{{0_{q × 1}}}\end{array}} \right]$,${\hat F_i}(t) ={ \rm diag}\left\{{F_i}(t),{F_i}(t)\right\}$,${\hat N_i} = \left[{\begin{array}{*{20}{c}}{{N_i}}\\{{0_{1 × n}}}\end{array}} \right]$和~${\pmb v} = {\dot {\pmb f}_a}$.由${F_i}(t)$的性质可得${\hat F_i}(t)$同样满足$\hat F_i^{\rm T}(t){\hat F_i}(t) \le I$.

    由式(10) 、(11) 和(13) 可以看出,只要得到矩阵${\hat L_i}$使得式(13) 是鲁棒随机稳定的,观测器(4) 即可以实现.矩阵${K_i}$和${\Phi _i}$可由下式获得

    \begin{equation}\left\{ \begin{array}{l}{K_i} = [{\begin{array}{*{20}{c}} {{I_{n + w}}}&{{0_{(n + w)× q}}}\end{array}}]{{\hat L}_i}\\{\Phi _i} = [{\begin{array}{*{20}{c}} {{0_{q × (n +w)}}}&{{I_q}}\end{array}}]{{\hat L}_i}\end{array} \right.\end{equation}

    (14)

    下面的定理给出了本文的主要结论.该定理不仅给出了式(13) 的鲁棒稳定性的证明,还给出了矩阵${\hat L_i}$的求取方法.

    定理 1. 如果对于${λ _{ij}} > 0$,${\mu _{ij}} >0$,${\varepsilon _{1i}} > 0$ 和${\varepsilon _{2i}} > 0$,$i,j\in { S}$,存在对称正定矩阵 ${P_i} \in {{\bf R}^{(n + w + q)× (n + w + q)}}$,${R_i} \in {{\bf R}^{n× n}}$,$X \in{{\bf R}^{(n + w + q)× (n + w + q)}}$,$Z \in {\bf R}^{n× n}$,矩阵${Y_i} \in {{\bf R}^{(n + w + q) × p}}$和$\gamma> 0$ 使得下述凸优化问题(15) 有解(其中,$ * $表示矩阵的对称部分,这里对对称矩阵${\wp }$,${\wp } <0$表示对称矩阵${\wp }$ 是负定的),则误差系统(13) 是鲁棒随机稳定的,且具有${H_\infty}$干扰抑制水平$\gamma $.其中

    $$\begin{array}{l}{\Gamma _{1i}} = {P_i}{{\hat A}_i} - {Y_i}{{\hat C}_i} + \hat A_i^{\rm T}{P_i} - {({Y_i}{{\hat C}_i})^{\rm T}} + {I_{n + w + q}}+ \\ ~~~~~~~~~~\sum\limits_{j = 1,j \ne i}^s {\frac{{\kappa _{ij}^2}}{4}{λ _{ij}}{I_{n + w + q}} + } \sum\limits_{j = 1}^s {{{\hat \pi }_{ij}}{P_j} + X}\end{array}$$ $$\begin{array}{l}{\Gamma _{2i}} = {R_i}{A_i} + A_i^{\rm T}{R_i} +Z+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\~~~~~~~~~~ \sum\limits_{P_i \hat L_i= Y_i}^s {{{\hat \pi }_{ij}}{R_j} + \sum\limits_{j = 1,j \ne i}^s {\frac{{\kappa _{ij}^2}}{4}{\mu _{ij}}{I_n}} }~~~~~~\end{array}$$ $$\begin{array}{l}{{\bar P}_i} = [\begin{array}{*{20}{c}} {{P_1} - {P_i}}& \cdots&{{P_{i-1}} - {P_i}}\end{array}\\~~~~{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}\begin{array}{*{20}{c}} { {P_{i + 1}-{P_i} }}& \cdots &{{P_s} -{P_i}}]\end{array}\end{array}$$ $$\begin{array}{l}{{\bar R}_i} = [\begin{array}{*{20}{c}} {{R_1} - {R_i}}& \cdots&{{R_{i-1}} - {R_i}}\end{array}\\{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}\begin{array}{*{20}{c}} {{R_{i+1}} - {R_i}}& \cdots &{{R_s} -{R_i}}]\end{array}\end{array} $$ $$\begin{array}{l}{λ _{1i}} ={\rm diag}\big\{-{λ _{i1}}{I_{n + w + q}},\cdots ,- {λ _{i(i - 1) }}{I_{n + w + q}} ,\\ {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - {λ _{i(i + 1) }}{I_{n + w +q}},\cdots ,- {λ _{is}}{I_{n + w + q}}\big\}\end{array} $$ $$\begin{array}{l}{λ _{2i}} = {\rm diag}\big\{-{\mu _{i1}}{I_n},\cdots,- {\mu_{i(i - 1) }}{I_n},\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} ~~~~~~~~~~~~~~~~~{\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - {\mu_{i(i + 1) }}{I_n},\cdots ,- {\mu_{is}}{I_n}\big\}~~~~~~~~~~~~~~~~~~~\end{array} $$

    \begin{equation} \left[{\begin{array}{*{20}{c}}{{\Gamma _{1i}}}&{{P_i}{{\hat A}_{di}}}&0&0&0&0&{{P_i}{{\hat D}_i}}&{{P_i}{{\hat M}_i}}&{{{\bar P}_i}}&0&0&0&0\\ * &{ - X}&0&0&0&0&0&0&0&0&0&0&0\\ *&* &{{\Gamma _{2i}}}&{{R_i}{A_d}_i}&{{R_i}{B_i}}&{{R_i}{D_i}}&0&0&0&{\hat N_i^{\rm T}}&{{R_i}{M_i}}&{N_i^{\rm T}}&{{{\bar R}_i}}\\ *&*&* &{ - Z}&0&0&0&0&0&0&0&0&0\\ *&*&*&* &{ - {\gamma ^2}{I_m}}&0&0&0&0&0&0&0&0\\ *&*&*&*&* &{ - {\gamma ^2}{I_q}}&0&0&0&0&0&0&0\\ *&*&*&*&*&* &{ - {\gamma ^2}{I_q}}&0&0&0&0&0&0\\ *&*&*&*&*&*&* &{ - \varepsilon _{1i}^{ - 1}{I_2}}&0&0&0&0&0\\ *&*&*&*&*&*&*&* &{ {λ _{1i}}}&0&0&0&0\\ *&*&*&*&*&*&*&*&* &{ - {\varepsilon _{1i}}{I_2}}&0&0&0\\ *&*&*&*&*&*&*&*&*&* &{ - \varepsilon _{2i}^{ - 1}{I_1}}&0&0\\ *&*&*&*&*&*&*&*&*&*&* &{ - {\varepsilon _{2i}}{I_1}}&0\\ *&*&*&*&*&*&*&*&*&*&*&* &{ {λ _{2i}}}\end{array}} \right]< 0\end{equation}

    (15)

    证明. 选取Lyapunov-Krasovskii函数

    $\begin{array}{l}V({\pmb \zeta},{\pmb x},i) = V({\pmb \zeta},i) + {\displaystyle\int}_{t - \tau }^t {{{\pmb \zeta} ^{\rm T}}(} \theta)X{\pmb \zeta} (\theta ){\rm d}\theta~ +\$2mm] ~~~~~~~~~~~~~~~~~~~~~V({\pmb x},i) + \displaystyle\int_{t - \tau }^t {{{\pmb x}^{\rm T}}(} \theta )Z{\pmb x}(\theta ){\rm d}\theta\end{array}$

    其中$V({\pmb \zeta},i) = {{\pmb \zeta}^{\rm T}}{P_i}{\pmb \zeta}$,$V({\pmb x},i) = {{\pmb x}^{\rm T}}{R_i}{\pmb x}$.定义对于具有马尔科夫过程的Lyapunov 函数的弱微分算子为

    $\ell V({\pmb \zeta} ,i) = V({\pmb \zeta},{r_t}) \cdot \frac{{{\rm d}{\pmb \zeta} }}{{\rm d}{t}}{|_{{r_t} = i}} + \sum\limits_{j \in{ S}} {{\pi _{ij}}V({\pmb \zeta},j)} $ $\ell V({\pmb x},i) =V({\pmb x},{r_t}) \cdot \frac{{{\rm d}{\pmb x}}}{{{\rm d}t}}{|_{{r_t} = i}} + \sum\limits_{j \in { S}} {{\pi_{ij}}V({\pmb x},j)} $

    因此对于任意 $i \in { S}$有

    \begin{equation*}\begin{array}{l} \ell V({\pmb\zeta},{\pmb x},i) = {{\pmb \zeta}^{\rm T}}({P_i}({{\hat A}_i} -{{\hat L}_i}{{\hat C}_i})+ \\~~~~~{({{\hat A}_i} -{{\hat L}_i}{{\hat C}_i})^{\rm T}}{P_i}){\pmb \zeta} + 2{{\pmb \zeta} ^{\rm T}}{P_i}{{\hat D}_i}{\pmb v}+ \\ ~~~~~2{{\pmb \zeta} ^{\rm T}}{P_i}\Delta {{\hat A}_i}{\pmb x} + 2{{\pmb \zeta} ^{\rm T}}{P_i}{{\hat A}_{di}}{\pmb \zeta} (t - \tau )+ \\ ~~~~~{{\pmb \zeta} ^{\rm T}}X{\pmb \zeta} - {{\pmb \zeta} ^{\rm T}}(t - \tau )X{\pmb \zeta} (t - \tau )+ \\ ~~~~~{{\pmb x}^{\rm T}}({R_i}{A_i} + A_i^{\rm T}{R_i}){\pmb x} + {{\pmb x}^{\rm T}}Z{\pmb x}+ \\ ~~~~~2{{\pmb x}^{\rm T}}{R_i}{B_i}{\pmb u} + 2{{\pmb x}^{\rm T}}{R_i}{D_i}{{\pmb f}_a}+ \\ ~~~~~2{{\pmb x}^{\rm T}}{R_i}{A_d}_i{\pmb x}(t - \tau ) + 2{{\pmb x}^{\rm T}}{R_i}\Delta {A_i}{\pmb x}- \\~~~~~{{\pmb x}^{\rm T}}(t - \tau )Z{\pmb x}(t - \tau )+ \\~~~~~ {{\pmb \zeta} ^{\rm T}}\sum\limits_{j = 1}^s {{\pi_{ij}}{P_j}{\pmb \zeta} } + {{\pmb x}^{\rm T}}\sum\limits_{j =1}^s {{\pi _{ij}}{R_j}{\pmb x}}\end{array}\end{equation*}

    (16)

    对于上式中的$2{{\pmb \zeta} ^{\rm T}}{P_i}\Delta {\hat A_i}{\pmb x}$和$2{{\pmb x}^{\rm T}}{R_i}\Delta {A_i}{\pmb x}$ 应用引理2可得,对于${\varepsilon _{1i}} > 0 $和${\varepsilon _{2i}} > 0$,$i\in { S}$有

    \begin{equation*}2{{\pmb \zeta} ^{\rm T}}{P_i}\Delta {\hat A_i}{\pmb x} \le {\varepsilon _{1i}}{{\pmb \zeta} ^{\rm T}}{P_i}{\hat M_i}\hat M_i^{\rm T}{P_i}{\pmb \zeta} + \varepsilon_{1i}^{ - 1}{{\pmb x}^{\rm T}}\hat N_i^{\rm T} {\hat N_i}{ {\pmb x}}\end{equation*}

    (17)

    \begin{equation*}2{{\pmb x}^{\rm T}}{R_i}\Delta {A_i}{\pmb x} \le {\varepsilon _{2i}}{{\pmb x}^{\rm T}}{R_i}{M_i}M_i^{\rm T}{R_i}{\pmb x} + \varepsilon _{2i}^{ - 1}{{\pmb x}^{\rm T}}N_i^{\rm T}{N_i}{\pmb x}\end{equation*}

    (18)

    此外,基于状态转移概率矩阵的特性我们可以分析得到

    $\begin{array}{l}\sum\limits_{j = 1}^s {{\pi _{ij}}{P_j}} = \sum\limits_{j = 1}^s {{{\hat \pi }_{ij}}{P_j}} + \sum\limits_{j = 1}^s {\Delta {\pi _{ij}}{P_j}} =\\ ~~~~~~~~~~\sum\limits_{j = 1}^s {{{\hat \pi }_{ij}}{P_j}} + \sum\limits_{j = 1,j \ne i}^s {(\frac{{\Delta {\pi _{ij}}}}{2}({P_j} - {P_i})}+ \\ ~~~~~~~~~~\dfrac{{\Delta {\pi _{ij}}}}{2}({P_j} - {P_i}))\end{array}$

    对上式第二行最后一项应用引理1,可以得到对于$i,j \in { S},

    $\begin{align} &\sum\limits_{j=1}^{s}{{{\pi }_{ij}}{{P}_{j}}}\le \sum\limits_{j=1}^{s}{{{{\hat{\pi }}}_{ij}}{{P}_{j}}}+ \\ &\sum\limits_{j=1,j\ne i}^{s}{(\frac{\kappa _{ij}^{2}}{4}{{\lambda }_{ij}}{{I}_{n+w+q}}+\lambda 955;_{ij}^{-1}{{({{P}_{j}}-{{P}_{i}})}^{2}})} \\ \end{align}$

    (19)

    其中${\kappa _{ij}}$为$\Delta {\pi _{ij}}$的上界在第一部分已经被定义,${λ _{ij}} > 0$为任意标量.同理对于$i,j \in { S}$,${\mu _{ij}} > 0$有

    \begin{equation*}\begin{array}{l}\sum\limits_{j = 1}^s {{\pi _{ij}}{R_j}} \le \sum\limits_{j = 1}^s {{{\hat \pi }_{ij}}{R_j}} + \\ ~~~~~~~~~~\sum\limits_{j = 1,j \ne i}^s {(\dfrac{{\kappa _{ij}^2}}{4}{\mu _{ij}}{I_n},+,} \mu _{ij}^{ - 1}{({R_j} - {R_i})^2})\end{array}\end{equation*}

    (20)

    将式(17) ~(20) 代入式(16) 可得

    $\begin{array}{l} \ell V({\pmb \zeta},x,i) \le {{\pmb \zeta} ^{\rm T}}({P_i}({{\hat A}_i} -{{\hat L}_i}{{\hat C}_i}) ~+\\~~~~~~ {({{\hat A}_i} - {{\hat L}_i}{{\hat C}_i})^{\rm T}}{P_i}){\pmb \zeta}+ 2{{\pmb \zeta}^{\rm T}}{P_i}{{\hat D}_i}{\pmb v }~+\\~~~~~~{\varepsilon _{1i}}{{\pmb \zeta}^{\rm T}}{P_i}{{\hat M}_i}\hat M_i^{\rm T}{P_i}{\pmb \zeta} +\varepsilon _{1i}^{ - 1}{{\pmb x}^{\rm T}}\hat N_i^{\rm T}{{\hat N}_i}{\pmb x} ~+\\~~~~~~2{{{\pmb \zeta}}^{\rm T}}{P_i}{{\hat A}_{di}}{{\pmb\zeta}} (t -\tau ) + {{ {\pmb \zeta}} ^{\rm T}}X{\pmb \zeta} ~- \\~~~~~~{{ {\pmb\zeta}} ^{\rm T}}(t - \tau )X{\pmb \zeta} (t - \tau)+ {{\pmb x}^{\rm T}}Z{\pmb x} ~+\\ ~~~~~~ {{\pmb x}^{\rm T}}({R_i}{A_i} + A_i^{\rm T}{R_i}){\pmb x}+ 2{{\pmb x}^{\rm T}}{R_i}{B_i}{\pmb u}~+ \\ ~~~~~~2{{\pmb x}^{\rm T}}{R_i}{D_i}{{\pmb f}_a} + {\varepsilon _{2i}}{{\pmb x}^{\rm T}}{R_i}{M_i}M_i^{\rm T}{R_i}{\pmb x} ~+ \\~~~~~~ \varepsilon _{2i}^{ - 1}{{\pmb x}^{\rm T}}N_i^{\rm T}{N_i}{\pmb x}+ 2{{\pmb x}^{\rm T}}{R_i}{A_d}_i{\pmb x}(t - \tau ) ~- \\~~~~~~{{\pmb x}^{\rm T}}(t - \tau )Z{\pmb x}(t - \tau )+ {{\pmb \zeta} ^{\rm T}}\sum\limits_{j = 1}^s {{{\hat \pi }_{ij}}{P_j}} {\pmb \zeta} ~+\\~~~~~~{{\pmb \zeta} ^{\rm T}}\sum\limits_{j = 1,j \ne i}^s {(\displaystyle\frac{{\kappa _{ij}^2}}{4}{λ _{ij}}{I_{n+w+q}}} + λ _{ij}^{ - 1}{({P_j} - {P_i})^2}){\pmb \zeta} ~+\\~~~~~~{{\pmb x}^{\rm T}}\sum\limits_{j = 1}^s {{{\hat \pi }_{ij}}{R_j}} {\pmb x}~+ \\~~~~~~ {{\pmb x}^{\rm T}}\sum\limits_{j = 1,j \ne i}^s {(\dfrac{{\kappa _{ij}^2}}{4}{\mu _{ij}}{I_n} + } \mu _{ij}^{ - 1}{({R_j} - {R_i})^2}){\pmb x}\end{array}$

    令$W = \ell V({\pmb \zeta} ,{\pmb x},i) + {{\pmb \zeta} ^{\rm T}}{\pmb \zeta} - {\gamma ^2}{{\pmb \varpi} ^{\rm T}}{\pmb \varpi} $,其中${\pmb \varpi} = \left[{\begin{array}{*{20}{c}}{\pmb u}\\{{{\pmb f}_a}}\\{\pmb v}\end{array}} \right]$,则有

    $\begin{array}{l}W \le {{\pmb \zeta} ^{\rm T}}({P_i}({{\hat A}_i} - {{\hat L}_i}{{\hat C}_i}) + {({{\hat A}_i} - {{\hat L}_i}{{\hat C}_i})^{\rm T}}{P_i}){\pmb \zeta}+\\ ~~~~~~~~2{{\pmb \zeta} ^{\rm T}}{P_i}{{\hat D}_i}{\pmb v} + {\varepsilon _{1i}}{{\pmb \zeta} ^{\rm T}}{P_i}{{\hat M}_i}\hat M_i^{\rm T}{P_i}{\pmb \zeta}+ \\ ~~~~~~~~ \varepsilon _{1i}^{ - 1}{{\pmb x}^{\rm T}}\hat N_i^{\rm T}{{\hat N}_i}{\pmb x} + 2{{\pmb \zeta} ^{\rm T}}{P_i}{{\hat A}_{di}}{\pmb \zeta} (t - \tau )+ \\ ~~~~~~~~ {{\pmb \zeta} ^{\rm T}}X{\pmb \zeta} - {{\pmb \zeta} ^{\rm T}}(t - \tau )X{\pmb \zeta} (t - \tau )+ \\ ~~~~~~~~{{\pmb x}^{\rm T}}({R_i}{A_i} + A_i^{\rm T}{R_i}){\pmb x} + {{\pmb x}^{\rm T}}Z{\pmb x} + 2{{\pmb x}^{\rm T}}{R_i}{B_i}{\pmb u}+ \\\end{array}$$\\ \begin{array}{l} ~~~~~~~~ {\varepsilon _{2i}}{{\pmb x}^{\rm T}}{R_i}{M_i}M_i^{\rm T}{R_i}{\pmb x} + \varepsilon _{2i}^{ - 1}{{\pmb x}^{\rm T}}N_i^{\rm T}{N_i}{\pmb x}+ \\~~~~~~~~2{{\pmb x}^{\rm T}}{R_i}{D_i}{{\pmb f}_a} + 2{{\pmb x}^{\rm T}}{R_i}{A_d}_i{\pmb x}(t - \tau )- \\ ~~~~~~~~{{\pmb x}^{\rm T}}(t - \tau )Z{\pmb x}(t - \tau ) + {{\pmb \zeta} ^{\rm T}}\sum\limits_{j = 1}^s {{{\hat \pi }_{ij}}{P_j}} {\pmb \zeta}+ \\ ~~~~~~~~{{\pmb \zeta} ^{\rm T}}\sum\limits_{j = 1,j \ne i}^s {(\dfrac{{\kappa _{ij}^2}}{4}{λ _{ij}}{I_{n + w + q}} + } λ _{ij}^{ - 1}{({P_j} - {P_i})^2}){\pmb \zeta}+ \\ ~~~~~~~~{{\pmb x}^{\rm T}}\sum\limits_{j = 1}^s {{{\hat \pi }_{ij}}{R_j}} {\pmb x} + {{\pmb x}^{\rm T}}\sum\limits_{j = 1,j \ne i}^s {(\dfrac{{\kappa _{ij}^2}}{4}{\mu _{ij}}{I_n}}+ \\ ~~~~~~~~\mu _{ij}^{ - 1}{({R_j} - {R_i})^2}){\pmb x} + {{\pmb \zeta} ^{\rm T}}{\pmb \zeta} - \gamma {{\pmb \varpi} ^{\rm T}}{\pmb \varpi} = {{\pmb \eta} ^{\rm T}}{\Omega _i}{\pmb \eta}\end{array}$

    其中

    $\begin{align} & {{\Omega }_{i}}=\left[ \begin{matrix} {{r}_{1i}} & {{P}_{i}}{{{\hat{A}}}_{di}} & 0 & 0 & 0 & 0 & {{P}_{i}}{{{\hat{D}}}_{i}} \\ * & -X & 0 & 0 & 0 & 0 & 0 \\ * & * & {{r}_{2i}} & {{R}_{i}}{{A}_{d}}_{i} & {{R}_{i}}{{B}_{i}} & {{R}_{i}}{{D}_{i}} & 0 \\ * & * & * & -Z & 0 & 0 & 0 \\ * & * & * & * & -{{\gamma }^{2}}{{I}_{m}} & 0 & 0 \\ * & * & * & * & * & -{{\gamma }^{2}}{{I}_{q}} & 0 \\ * & * & * & * & * & * & -{{\gamma }^{2}}{{I}_{q}} \\ \end{matrix} \right] \\ & {{r}_{1i}}={{P}_{i}}({{{\hat{A}}}_{i}}-{{{\hat{L}}}_{i}}{{{\hat{C}}}_{i}})+{{({{{\hat{A}}}_{i}}-{{{\hat{L}}}_{i}}{{{\hat{C}}}_{i}})}^{\text{T}}}{{P}_{i}}+{{I}_{n+w+q}}+ \\ & {{\varepsilon }_{1i}}{{P}_{i}}{{{\hat{M}}}_{i}}\hat{M}_{i}^{\text{T}}{{P}_{i}}+X+\sum\limits_{j=1}^{s}{{{{\hat{\pi }}}_{ij}}{{P}_{j}}}+ \\ & \sum\limits_{j=1,j\ne i}^{s}{(\frac{\kappa _{ij}^{2}}{4}{{\lambda }_{ij}}{{I}_{n+w+q}}+}\lambda _{ij}^{-1}{{({{P}_{j}}-{{P}_{i}})}^{2}}) \\ & {{r}_{2i}}={{R}_{i}}{{A}_{i}}+A_{i}^{\text{T}}{{R}_{i}}+Z+\sum\limits_{j=1}^{s}{{{{\hat{\pi }}}_{ij}}{{R}_{j}}}+ \\ & \sum\limits_{j=1,j\ne i}^{s}{(\frac{\kappa _{ij}^{2}}{4}{{\mu }_{ij}}{{I}_{n}}+}\mu _{ij}^{-1}{{({{R}_{j}}-{{R}_{i}})}^{2}})+ \\ & {{\varepsilon }_{2i}}{{R}_{i}}{{M}_{i}}M_{i}^{\text{T}}{{R}_{i}}+\varepsilon _{1i}^{-1}\hat{N}_{i}^{\text{T}}{{{\hat{N}}}_{i}}+\varepsilon _{2i}^{-1}N_{i}^{\text{T}}{{N}_{i}} \\ & \eta ={{\left[ \begin{matrix} \zeta & \zeta (t-\tau ) & x & x(t-\tau ) & \varpi \\ \end{matrix} \right]}^{\text{T}}} \\ \end{align}$

    注意到${P_i}{\hat L_i} = {Y_i}$,且对式(15) 计算舒尔补可得$W<0$,即$\ell V + {{\pmb \zeta} ^{\rm T}}{\pmb \zeta} - \gamma {{\pmb\varpi} ^{\rm T}}{\pmb \varpi}<0$.由Dynkin$'$s公式,有

    $\begin{array}{l}{\rm E}\left\{ {V({\pmb \zeta},{\pmb x},i)} \right\} - {\rm E}\left\{ {V({{\pmb \zeta} _0},{{\pmb x}_0},{r_0})} \right\}+ \\ {\rm E}\displaystyle\int_0^\infty {{{\pmb \zeta}^{\rm T}}(\theta ){\pmb \zeta} (\theta ){\rm d}\theta -{\rm E}} \displaystyle\int_0^\infty {{\gamma ^2}{{\pmb \varpi}^{\rm T}}(\theta ){\pmb \varpi} (\theta ){\rm d}\theta } <0\end{array}$

    其中${\pmb \zeta}_0,{\pmb x}_0,r_0$分别为相应量的初始值.因此我们可以得到

    $\begin{array}{l}{\rm E}\displaystyle\int_0^\infty {{{\pmb \zeta} ^{\rm T}}(\theta ){\pmb \zeta} (\theta ){\rm d}\theta - {\rm E}}\displaystyle\int_0^\infty{{\gamma ^2}{{\pmb \varpi} ^{\rm T}}(\theta ){\pmb \varpi} (\theta ){\rm d}\theta }< \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{\mathop{\rm E}\nolimits} V({{\pmb \zeta} _0},{{\pmb x} _0},{r_0})\end{array}$

    由定义1即

    $\begin{align} &{{[\text{ }\int\limits_{0}^{\infty }{{{\zeta }^{\text{T}}}(\theta )}\zeta (\theta )\text{d}\theta ]}^{\frac{1}{2}}}\le [{{\gamma }^{2}}\left\| \varpi (\theta ) \right\|_{2}^{2}+~ \\ &V({{\zeta }_{0}},{{x}_{0}},{{r}_{0}}){{]}^{\frac{1}{2}}} \\ \end{align}$

    (21)

    因此结合定义2和3,系统(13) 鲁棒随机稳定且具有干扰抑制水平$\gamma$.

    注 3.本文引入了Lyapunov-Krasovskii函数来处理带有时滞项的稳定性证明,利用Lyapunov-Krasovskii函数中的积分项可以把系统的时滞项连同状态引入到线性矩阵不等式中,从而利用Lyapunov稳定性理论可以使得整个系统的状态满足定义2的要求.

    由定理1可以得出,系统(4) 是系统(3) 的鲁棒观测器,并且可以估计出系统状态、执行器和传感器故障.具体的算法如下:

    1) 由式(5) 和(6) 计算得出矩阵${T_i}$和${Q_i}$;

    2) 求解凸优化问题(15) ,若有解,则可以得到${\hat L_i} = P_i^{ -1}{Y_i}$,并通过式(14) 计算得到矩阵${K_i}$和${\Phi _i}$;

    3) 将${K_i}$代入式(10) 和(11) 即可得到矩阵${N_i}$和${L_i}$.

    至此观测器的系数矩阵均求取得到,观测器(4) 可以实现.系统的状态和传感器故障可由$\hat{\pmb x} =[{\begin{array}{*{20}{c}} {{I_n}}&{{0_{n × w}}}\end{array}}]\hat {\bar {\pmb x} }$和${\hat {\pmb f} _s} =[{\begin{array}{*{20}{c}}{{0_{w × n}}}&{{I_w}}\end{array}}]\hat {\bar {\pmb x} }$得到. ${\hat {\pmb f} _a}$可由系统(4) 中的第三式在线调节得到.

    注 4[13].系统(4) 中的观测器是依赖于马尔科夫跳变系统的模态的,因此当系统跳变到某一个模态时,观测器相应地切换到这个模态.此外,观测器又依赖于转移概率${\pi_{ij}}$,使得其能够处理跳变所带来的影响.因此,观测器(4) 可以保证在系统跳变的情形下始终能估计出系统状态、执行器和传感器故障.

    注 5 .本文所设计的方法中传感器估计的思路与文献[16]相类似,都是利用了广义描述系统的思想,但是设计观测器的技术手段是不同的.文献[16]将传感器故障引入到描述系统中,然后针对该描述系统设计了滑模观测器,利用滑模控制律抑制了传感器故障,然后对系统状态(包含传感器故障)做出了估计.而本文并没有将传感器故障引入描述系统中,针对描述系统设计了自适应观测器,该观测器不仅可以估计系统状态和传感器故障,还可以在线自动调节出执行器故障.相较于文献[16],本文存在以下优点: 1) 本文考虑的是一类具有参数不确定且状态转移概率不确定的延迟马尔科夫跳变系统,而文献[16]假定状态转移概率精确可得,这具有一定限制性;2) 本文同时估计了状态、执行器和传感器故障,文献[16]并没有涉及到执行器故障的估计;3) 由于文献[16]通过设计滑模观测器估计系统状态和抑制传感器故障,因此需要提前获知传感器故障的上界,而本文设计无需知道其上界.

    为验证本文所提出方法的有效性,考虑一个形如式(1) 的具有两个模态的数值延迟马尔科夫跳变系统,相关参数如下:

    $${A_1}= \left[{\begin{array}{*{20}{c}}{ - 5}&0&1\\0&{ - 7.5}&0\\2&0&{ - 5}\end{array}} \right],{A_2} = \left[{\begin{array}{*{20}{c}}{ - 6}&0&{1.1}\\0&{ - 8}&0\\0&0&{ - 5}\end{array}} \right] $$ $${A_{d1}} = \left[{\begin{array}{*{20}{c}}{0.2}&0&{0.1}\\{0.1}&0&0\\0&{0.1}&0\end{array}} \right],{B_1} = \left[{\begin{array}{*{20}{c}}1\\0\\1\end{array}} \right]$$ $${A_{d2}} = \left[{\begin{array}{*{20}{c}}{0.1}&0&{0.05}\\{0.05}&0&0\\0&{0.05}&0\end{array}} \right],{B_2} = \left[{\begin{array}{*{20}{c}}{0.5}\\0\\{0.5}\end{array}} \right]$$ $${D_1} = \left[{\begin{array}{*{20}{c}}{0.2}\\{0.1}\\{0.1}\end{array}} \right],{D_2} = \left[{\begin{array}{*{20}{c}}{0.3}\\{0.05}\\{0.1}\end{array}} \right]$$ $${C_1} = {C_2} = \left[{\begin{array}{*{20}{c}}1&1&0\\0&1&0\end{array}} \right]$$$${G_1} = {G_2} = \left[{\begin{array}{*{20}{c}}{0.1}\\{ - 0.3}\end{array}} \right],{M_1} = {M_2} = \left[{\begin{array}{*{20}{c}}{0.1}\\{0.2}\\{0.1}\end{array}} \right]$$ $${N_1} = {N_2} = \left[{\begin{array}{*{20}{c}}{0.1}&{0.2}&{0.2}\end{array}} \right]$$$${F_1}(t) = {F_2}(t) = \sin (t)$$

    估计的状态转移概率矩阵为$\hat \Pi {\rm{ ~ = }}\left[{\begin{array}{*{20}{c}}{{\rm{ - }}0.4}&{0.4}\\{0.3}&{{\rm{ - }}0.3}\end{array}} \right]$,${\kappa _{12}} = {\kappa _{21}} = 1$和${λ _{12}} = {λ _{21}} = {\varepsilon _{11}} = {\varepsilon _{12}} = {\varepsilon _{21}} = {\varepsilon _{22}} = {\mu _{12}} = {\mu _{21}} = 1$,且延迟时间为3s. 执行器故障设定为${{ f}_a} = \sin (5t) + { {\rm e}^{ - 2t}} + 2\cos (t)$,传感器故障设定为${{ f}_s} = \sin (t) + 2\cos (5t)$. 本文假设马尔科夫系统有2 个模态${ S} = \left\{ {1,2} \right\}$.

    在仿真中分别设置初始状态${{\pmb x}_0} = {[{\begin{array}{*{20}{c}} 3&{ - 2}&2\end{array}}]^{\rm T}}$,${{\pmb z}_0} = {[{\begin{array}{*{20}{c}}0&0&2\end{array}}]^{\rm T}}$,${r_0} = 1$和${\pmb \phi} (t) = {[{\begin{array}{*{20}{c}}1&0&0\end{array}}]^{\rm T}}$,$t \in [{\begin{array}{*{20}{c}}{ - 3}&0\end{array}}]$.系统状态估计如图 1~3所示.图 4为执行器故障估计效果,图 5为传感器故障估计效果.图 6为马尔科夫跳变系统的切换信号.由图 1~5可以看出本文方法对状态、执行器和传感器故障有很好的估计效果,仿真结果证明了方法的可行性.

    图 1  状态$x_1$的估计曲线
    Fig. 1  The curve of the estimation of $x_1$
    图 2  状态$x_2$的估计曲线
    Fig. 2  The curve of the estimation of $x_2$
    图 3  状态$x_3$的估计曲线
    Fig. 3  The curve of the estimation of $x_3$
    图 4  执行器故障估计曲线
    Fig. 4  The curve of the estimation of actuator fault
    图 5  传感器故障估计曲线
    Fig. 5  The curve of the estimation of sensor fault
    图 6  切换信号
    Fig. 6  Switching signal

    为了进一步验证本文所设计方法,接下来针对一个实际例子进行仿真,以此验证设计方法的实用性.考虑一个线性化的F-404飞行器引擎模型,其中矩阵$A$为

    $A(t)=\left[ \begin{matrix} -1.46&0&2.428 \\ 0.1643+0.5\beta (t)&-0.4+\beta (t)&-0.3788 \\ 0.3107&0&-2.23 \\ \end{matrix} \right]$

    $\beta (t)$是一个不确定的模型参数.假设$\beta (t)$满足一个$N = 2$的Markov过程:

    $\beta (t) = \left\{ \begin{array}{l} - 1,\; \; \; \; r(t) = 1\\ - 2,\; \; \; \; r(t) = 2\end{array} \right.$

    其他矩阵设置如下:

    $${B_1} = \left[{\begin{array}{*{20}{c}}0\\1\\{0.3}\end{array}} \right],{B_2} = \left[{\begin{array}{*{20}{c}}{ - 1}\\{0.2}\\{ - 2}\end{array}} \right],{D_1} = \left[{\begin{array}{*{20}{c}}0\\{ - 0.1}\\0\end{array}} \right]$$ $${D_2} = \left[{\begin{array}{*{20}{c}}{ - 0.1}\\0\\{ - 0.3}\end{array}} \right],{C_1} = {C_2} = \left[{\begin{array}{*{20}{c}}1&0&0\\1&0&1\end{array}} \right]$$ $${G_1} = {G_2} = \left[{\begin{array}{*{20}{c}}{ - 1}\\1\end{array}} \right]$$ $${A_{d1}} = \left[{\begin{array}{*{20}{c}}{0.1}&0&{0.1}\\{0.1}&0&0\\0&{0.1}&{0.2}\end{array}} \right] $$ $${A_{d2}} = \left[{\begin{array}{*{20}{c}}{0.1}&0&{0.05}\\{0.03}&0&0\\0&{0.05}&{0.1}\end{array}} \right]$$ $${M_1} = {M_2} = \left[{\begin{array}{*{20}{c}}{0.1}\\0\\{0.3}\end{array}} \right],{F_1}(t) = {F_2}(t) = \sin (t)$$ $${N_1} = {N_2} = \left[{\begin{array}{*{20}{c}}{0.1}&{0.3}&{0.1}\end{array}} \right]$$

    估计的转移概率矩阵为$\hat \Pi = \left[{\begin{array}{*{20}{c}}{ - 3}&3\\4&{ - 4}\end{array}} \right]$,其他参数选取如同实例1.

    从参数中不难发现系统满足rank$({D_1}) \ne {\rm rank}({C_1}{D_1}) =0$,这与基于滑模观测器利用等价输出注入信号重构故障方法[30]的匹配条件是矛盾的.因此,传统的基于滑模观测器的方法不能用于该系统.此外,由于本文所讨论的系统是随机系统,因此系统的输出也是随机的,这就意味着基于代数重构的故障估计方法[31]也是不可行的,因为该方法中涉及到输出的微分信息.相比于文献[16]中的设计方法要求传感器故障是有界的且上界已知,以及其一阶微分也是有界的且上界已知[20],本文的设计方法中对这两种故障仅作了如下要求${\dot {\pmb f}_a} \in{L_2}[0\ \infty)$,这就使得本文的设计方法在实际应用中具有更广泛的应用范围.

    为了验证本文所设计方法的优越性,选取执行器故障和传感器故障分别为${{f}_a} = 0.3\sin (t) + 0.5\cos (3t)$和${{ f}_s} = \sin (2t)$.

    在仿真中分别设置初始状态${{\pmb x}_0} = {[{\begin{array}{*{20}{c}} 1&1&1\end{array}}]^{\rm T}}$,${{\pmb z}_0} = {[{\begin{array}{*{20}{c}}1&2&{0.3}&0\end{array}}]^{\rm T}}$,${r_0} = 1$和${\pmb \phi} (t) = {[{\begin{array}{*{20}{c}}1&0&0\end{array}}]^{\rm T}}$,$t \in [{\begin{array}{*{20}{c}}{ - 3}&0\end{array}}]$.系统状态估计如图 7~9所示.图 10图 11分别为执行器和传感器故障估计效果.图 12为马尔科夫切换信号.由图 7~11可以看出本文方法对状态、执行器和传感器故障有很好的估计效果,仿真结果也证明了正如注5所示,该方法相较于文献[16, 20]具有优越性.

    图 7  F-404模型状态$x_1$的估计曲线
    Fig. 7  The curve of the estimation of $x_1$ of Model F-404
    图 8  F-404模型状态$x_2$的估计曲线
    Fig. 8  The curve of the estimation of $x_2$ of Model F-404
    图 9  F-404模型状态$x_3$的估计曲线
    Fig. 9  The curve of the estimation of $x_3$ of Model F-404
    图 10  F-404模型执行器故障估计曲线
    Fig. 10  The curve of the estimation of actuator fault of Model F-404
    图 11  F-404模型传感器故障估计曲线
    Fig. 11  The curve of the estimation of sensor fault of Model F-404
    图 12  切换信号
    Fig. 12  Switching signal

    本文针对具有参数不确定和延迟环节的马尔科夫跳变系统,在状态转移概率矩阵不确定的情形下,讨论了执行器和传感器故障同时估计的方法.首先构造一个广义描述系统,接着针对该系统设计自适应状态观测器使得执行器和传感器故障可以同时估计出.该方法的充分条件由线性矩阵不等式给出.仿真分析证明了该方法的可行性.

  • 图  1  两条评论文本信息

    Fig.  1  Two opinion texts

    图  2  SSTM模型的图表示

    Fig.  2  SSTM model

    图  3  JST模型的图表示

    Fig.  3  JSTmodel

    图  4  ASUM模型的图表示

    Fig.  4  ASUM model

    图  5  主题数目对三个主题模型情感识别性能的影响

    Fig.  5  The impact of topic numbers in three topic models

    表  1  论文中符号的含义

    Table  1  Meanings of the notations

    符号描述符号描述
    D文档数量βφ的非对称Dirichlet先验参数,
    M词对数量β = {{{βz, l, i}k=1T}l=1S}i=1V
    T主题数目αθ的Dirichlet先验参数
    S情感极性数γπ的Dirichlet先验参数
    V词汇表大小 Θ主题的多项式分布
    b词对, b = (wi, wj)ztt个词的主题
    wltt个词的情感极性标签
    z主题 B词对集合
    l情感极性标签{z-t}除第t个词以外的其他所有词的主题分布
    πk, l主题k和情感极性l上的分布 {l-t}除第t个词以外的其他所有词的情感极性
    Π情感极性标签的多项式分布Nk, l, iwi指派为主题k和情感极性l的次数
    φk, l, ww基于主题k和情感极性l的分布 Nk, l指派为主题k和情感极性l的词的数量
    Φ词的多项式分布N'(·)句子计数
    θk主题k的分布 Nk主题k中的词的数量
    下载: 导出CSV

    表  2  语料统计信息

    Table  2  Statistics of the text corpus

    笔记本手机
    文档平均词数2032
    评论数3 9882 289
    词汇表大小7 9648 787
    正面评论数1 9931 146
    负面评论数1 9951 943
    下载: 导出CSV

    表  3  笔记本数据集中发现的部分主题词列表

    Table  3  Example topics discovered from LAPTOP dataset

    SSTMBTMLDA
    外观电池散热性外观电池散热性外观电池散热性
    指纹电池散热电池散热容易电池
    钢琴小时容易时间指纹小时散热
    漂亮温度指纹小时不错外壳时间声音
    烤漆比较键盘键盘电池钢琴风扇
    时间烤漆比较烤漆续航
    模具续航CPU比较表面比较温度
    屏幕使用硬盘不错温度亮点使用
    外壳上网风扇外壳不错声音感觉键盘运行
    文字机器钢琴使用使用小巧
    呵呵比较屏幕续航CPU屏幕
    下载: 导出CSV

    表  4  手机数据集中发现的部分主题词列表

    Table  4  Example topics discovered from MOBILE dataset

    SSTMBTMLDA
    拍照媒体播放屏幕拍照媒体播放屏幕拍照媒体播放屏幕
    拍摄播放屏幕像素MP3屏幕效果支持屏幕
    功能速度摄像头播放摄像头MP3显示
    支持不错显示拍摄耳机显示像素播放比较
    屏幕影音数码效果TFT拍照内存色彩
    像素手机效果手机效果照片蓝牙
    材质处理器彩色支持音乐色彩拍摄清晰
    照片格式设计手机格式
    摄像头MP3TFT效果功能数码扩展铃声
    拍照流畅机子相机不错26万相机文件方便
    数码文件拍照比较像素视频TFT
    下载: 导出CSV

    表  5  笔记本数据集上的CM值(%)

    Table  5  CM(%) on laptop dataset

    方法标注员1标注员2标注员3标注员4平均值
    LDA5850605656
    BTM7066757270.75
    SSTM6964726768
    下载: 导出CSV

    表  6  手机数据集上的CM值(%)

    Table  6  CM(%) on mobile dataset

    方法标注员1标注员2标注员3标注员4平均值
    LDA6965717469.75
    BTM7674818178
    SSTM7572797876
    下载: 导出CSV

    表  7  SSTM 发现的部分情感相关的主题词列表

    Table  7  Example sentiment-specific topics discovered by SSTM

    笔记本手机
    正面负面正面负面
    快递性价比外观做工售后铃声外观按键输入法信号
    速度不错有点电话铃声设计按键短信信号
    东西价格漂亮禁用服务不错外观手感输入法网络
    京东机器喜欢触摸板耳机不错感觉
    质量便宜需要客服切换
    外观外壳送货声音感觉操作拼音检测
    发货性能本本盖子快递喜欢不错数字移动
    问题不错音乐漂亮容易麻烦关机
    比较电脑老版时尚使用质量
    很快超值键盘态度耳朵手感摇杆故障
    送货降价适合瑕疵前台效果机身舒服标点符号通话
    下载: 导出CSV

    表  8  情感极性识别结果(主题数目设置为25)

    Table  8  Sentiment identification results (The number of topics is 25.)

    基线JSTASUMSSTMSVM (Uni)SVM (Bi)
    笔记本0.6376450.506770.577540.655030.660470.70021
    手机0.6021880.536980.436940.642010.644760.68953
    下载: 导出CSV
  • [1] Fang L, Huang M L, Zhu X Y. Exploring weakly supervised latent sentiment explanations for aspect-level review analysis. In:Proceedings of the 22nd ACM International Conference on Conference on Information & Knowledge Management. New York, NY, USA:ACM, 2013.1057-1066 http://cn.bing.com/academic/profile?id=2061812507&encoded=0&v=paper_preview&mkt=zh-cn
    [2] 徐冰, 赵铁军, 王山雨, 郑德权. 基于浅层句法特征的评价对象抽取研究. 自动化学报, 2011, 37(10):1241-1247 http://www.aas.net.cn/CN/abstract/abstract17613.shtml

    Xu Bing, Zhao Tie-Jun, Wang Shan-Yu, Zheng De-Quan. Extraction of opinion targets based on shallow parsing features. Acta Automatica Sinica, 2011, 37(10):1241-1247 http://www.aas.net.cn/CN/abstract/abstract17613.shtml
    [3] 赵妍妍, 秦兵, 刘挺. 基于图的篇章内外特征相融合的评价句极性识别. 自动化学报, 2010, 36(10):1417-1425 http://www.aas.net.cn/CN/abstract/abstract17356.shtml

    Zhao Yan-Yan, Qin Bing, Liu Ting. Integrating intra-and inter-document evidences for improving sentence sentiment classification. Acta Automatica Sinica, 2010, 36(10):1417-1425 http://www.aas.net.cn/CN/abstract/abstract17356.shtml
    [4] Liu B. Sentiment Analysis and Opinion Mining. San Rafael, CA:Morgan Claypool Publishers, 2012.
    [5] Pang B, Lee L. Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2008, 2(1-2):1-135 http://cn.bing.com/academic/profile?id=2097726431&encoded=0&v=paper_preview&mkt=zh-cn
    [6] Jo Y, Oh A H. Aspect and sentiment unification model for online review analysis. In:Proceedings of the 4th ACM International Conference on Web Search and Data Mining. New York, NY, USA:ACM, 2011.815-824
    [7] He Y L, Lin C H, Alani H. Automatically extracting polarity-bearing topics for cross-domain sentiment classification. In:Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies——Volume 1. Stroudsburg, PA, USA:Association for Computational Linguistics, 2011.123-131
    [8] Lin C H, He Y L. Joint sentiment/topic model for sentiment analysis. In:Proceedings of the 18th ACM Conference on Information and Knowledge Management. New York, NY, USA:ACM, 2009.375-384
    [9] 张林, 钱冠群, 樊卫国, 华琨, 张莉. 轻型评论的情感分析研究. 软件学报, 2014, 25(12):2790-2807 http://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201412006.htm

    Zhang Lin, Qian Guan-Qun, Fan Wei-Guo, Hua Kun, Zhang Li. Sentiment analysis based on light reviews. Journal of Software, 2014, 25(12):2790-2807 http://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201412006.htm
    [10] Weng J S, Lim E P, Jiang J, He Q. TwitterRank:finding topic-sensitive influential twitterers. In:Proceedings of the 3rd ACM International Conference on Web Search and Data Mining. New York, NY, USA:ACM, 2010.261-270 http://cn.bing.com/academic/profile?id=2159681701&encoded=0&v=paper_preview&mkt=zh-cn
    [11] Hong L J, Davison B D. Empirical study of topic modeling in twitter. In:Proceedings of the 1st Workshop on Social Media Analytics. New York, NY, USA:ACM, 2010.80-88
    [12] Zhao W X, Jiang J, Weng J S, He J, Lim E P, Yan H F, Li X M. Comparing twitter and traditional media using topic models. Advances in Information Retrieval. Heidelberg, Berlin, Germany:Springer, 2011.338-349
    [13] Gruber A, Weiss Y, Rosen-Zvi M. Hidden topic Markov models. In:Proceedings of the 11th International Conference on Artificial Intelligence and Statistics. San Juan, Puerto Rico:Omnipress, 2007.163-170
    [14] Yan X H, Guo J F, Lan Y Y, Cheng X Q. A biterm topic model for short texts. In:Proceedings of the 22nd International Conference on World Wide Web. New York, NY, USA:ACM, 2013.1445-1456
    [15] Riloff E, Patwardhan S, Wiebe J. Feature subsumption for opinion analysis. In:Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA:Association for Computational Linguistics, 2006.440-448 http://cn.bing.com/academic/profile?id=2241121518&encoded=0&v=paper_preview&mkt=zh-cn
    [16] Pang B, Lee L. Seeing stars:exploiting class relationships for sentiment categorization with respect to rating scales. In:Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. Stroudsburg, PA, USA:Association for Computational Linguistics, 2005.115-124
    [17] Matsumoto S, Takamura H, Okumura M. Sentiment classification using word sub-sequences and dependency sub-trees. Advances in Knowledge Discovery and Data Mining. Heidelberg, Berlin, Germany:Springer, 2005:301-311
    [18] Pang B, Lee L, Vaithyanathan S. Thumbs up? sentiment classification using machine learning techniques. In:Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing——Volume 10. Stroudsburg, PA, USA:Association for Computational Linguistics, 2002.79-86
    [19] Titov I, McDonald R. Modeling online reviews with multi-grain topic models. In:Proceedings of the 17th International Conference on World Wide Web. New York, NY, USA:ACM, 2008.111-120 http://cn.bing.com/academic/profile?id=2096110600&encoded=0&v=paper_preview&mkt=zh-cn
    [20] Titov I, McDonald R T. A joint model of text and aspect ratings for sentiment summarization. In:Proceedings of ACL-08:HLT. Columbus, Ohio, USA:Association for Computational Linguistics, 2008.308-316
    [21] Li F T, Huang M L, Zhu X Y. Sentiment analysis with global topics and local dependency. In:Proceedings of the 24th AAAI Conference on Artificial Intelligence. Carol Hamilton, USA:Association for the Advancement of Artificial Intelligence, 2010.1371-1376
    [22] Wang H N, Lu Y, Zhai C X. Latent aspect rating analysis without aspect keyword supervision. In:Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA:ACM, 2011.618-626 http://cn.bing.com/academic/profile?id=2019207508&encoded=0&v=paper_preview&mkt=zh-cn
    [23] Moghaddam S, Ester M. ILDA:interdependent LDA model for learning latent aspects and their ratings from online product reviews. In:Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA:ACM, 2011.665-674
    [24] Mukherjee S, Basu G, Joshi S. Joint author sentiment topic model. In:Proceedings of the 2014 SIAM International Conference on Data Mining. Philadelphia, PA, USA:SIAM, 2014.370-378
    [25] Zhao W X, Jiang J, Yan H F, Li X M. Jointly modeling aspects and opinions with a MaxEnt-LDA hybrid. In:Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA:Association for Computational Linguistics, 2010.56-65
    [26] Li F T, Wang S, Liu S H, Zhang M. Suit:a supervised user-item based topic model for sentiment analysis. In:Proceedings of the 28th AAAI Conference on Artificial Intelligence. Carol Hamilton, USA:Association for the Advancement of Artificial Intelligence, 2014.1636-1642
    [27] Moghaddam S, Ester M. The FLDA model for aspect-based opinion mining:addressing the cold start problem. In:Proceedings of the 22nd International Conference on World Wide Web. Republic and Canton of Geneva, Switzerland:International World Wide Web Conferences Steering Committee, 2013.909-918
    [28] Zhang Y, Ji D H, Su Y, Wu H M. Joint naïve Bayes and LDA for unsupervised sentiment analysis. Advances in Knowledge Discovery and Data Mining. Heidelberg, Berlin, Germany:Springer, 2013.402-413
    [29] Zhang Y, Ji D H, Su Y, Sun C. Sentiment analysis for online reviews using an author-review-object model. Information Retrieval Technology. Heidelberg, Berlin, Germany:Springer, 2011.362-371
    [30] Moghaddam S, Ester M. On the design of LDA models for aspect-based opinion mining. In:Proceedings of the 21st ACM International Conference on Information and Knowledge Management. New York, NY, USA:ACM, 2012.803-812 http://cn.bing.com/academic/profile?id=1967274749&encoded=0&v=paper_preview&mkt=zh-cn
    [31] Li C T, Zhang J W, Sun J T, Chen Z. Sentiment topic model with decomposed prior. In:Proceedings of the 2013 SIAM International Conference on Data Mining. Philadelphia, PA:SIAM, 2013.767-775
    [32] Wang X R, McCallum A. Topics over time:a non-Markov continuous-time model of topical trends. In:Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA:ACM, 2006.424-433
    [33] Phan X H, Nguyen L M, Horiguchi S. Learning to classify short and sparse text & web with hidden topics from large-scale data collections. In:Proceedings of the 17th International Conference on World Wide Web. New York, NY, USA:ACM, 2008.91-100 http://www.oalib.com/references/5692309
    [34] Lim K W, Buntine W. Twitter opinion topic model:extracting product opinions from tweets by leveraging hashtags and sentiment lexicon. In:Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. New York, NY, USA:ACM, 2014.1319-1328
    [35] Chang J, Boyd-Graber J L, Gerrish S, Wang C, Blei D M. Reading tea leaves:how humans interpret topic models. In:Proceedings of the 2009 Advances in Neural Information Processing Systems. San Diego, CA, USA:NIPS Foundation, Inc., 2009.288-296
    [36] Xie P T, Xing E P. Integrating document clustering and topic modeling. In:Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence. Cambridge, MA, USA:Association for Uncertainty in Artificial Intelligence, 2013.
  • 期刊类型引用(7)

    1. 文利燕,陶钢,姜斌,杨杰. 非线性动态突变系统的多模型自适应执行器故障补偿设计. 自动化学报. 2022(01): 207-222 . 本站查看
    2. 周子龙,李晓航. 离散马尔可夫跳变系统的降维观测器设计. 电光与控制. 2022(04): 77-82+94 . 百度学术
    3. 乔栋,张潇潇,王友清. 具有积分测量和时延的离散线性变参数系统故障与状态估计. 控制理论与应用. 2021(05): 587-594 . 百度学术
    4. 庞新蕊,付兴建. 模态依赖时滞不确定Markov跳变系统的鲁棒H_∞容错控制. 兰州理工大学学报. 2020(01): 100-105 . 百度学术
    5. 张仁斌,吴佩,陆阳,郭忠义. 基于混合马尔科夫树模型的ICS异常检测算法. 自动化学报. 2020(01): 127-141 . 本站查看
    6. 熊威,顾德,刘飞. PKTP有限时间跳变系统H_∞可靠控制. 计算机仿真. 2020(05): 191-196 . 百度学术
    7. 熊威,顾德,刘飞. 转移概率部分未知时滞跳变系统有限时间H_∞控制. 计算机测量与控制. 2019(07): 63-69 . 百度学术

    其他类型引用(19)

  • 加载中
图(5) / 表(8)
计量
  • 文章访问数:  2291
  • HTML全文浏览量:  1040
  • PDF下载量:  1975
  • 被引次数: 26
出版历程
  • 收稿日期:  2015-09-15
  • 录用日期:  2015-12-28
  • 刊出日期:  2016-08-01

目录

/

返回文章
返回