2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多目标人工鱼群算法的硅单晶直径检测图像阈值分割方法

刘丁 张新雨 陈亚军

刘丁, 张新雨, 陈亚军. 基于多目标人工鱼群算法的硅单晶直径检测图像阈值分割方法. 自动化学报, 2016, 42(3): 431-442. doi: 10.16383/j.aas.2016.c150587
引用本文: 刘丁, 张新雨, 陈亚军. 基于多目标人工鱼群算法的硅单晶直径检测图像阈值分割方法. 自动化学报, 2016, 42(3): 431-442. doi: 10.16383/j.aas.2016.c150587
LIU Ding, ZHANG Xin-Yu, CHEN Ya-Jun. Monocrystalline Silicon Diameter Detection Image Threshold Segmentation Method Using Multi-objective Artificial Fish Swarm Algorithm. ACTA AUTOMATICA SINICA, 2016, 42(3): 431-442. doi: 10.16383/j.aas.2016.c150587
Citation: LIU Ding, ZHANG Xin-Yu, CHEN Ya-Jun. Monocrystalline Silicon Diameter Detection Image Threshold Segmentation Method Using Multi-objective Artificial Fish Swarm Algorithm. ACTA AUTOMATICA SINICA, 2016, 42(3): 431-442. doi: 10.16383/j.aas.2016.c150587

基于多目标人工鱼群算法的硅单晶直径检测图像阈值分割方法

doi: 10.16383/j.aas.2016.c150587
基金项目: 

国家自然科学基金重点项目 61533014

高等学校博士学科点专项科研基金 20136118130001

国家重点基础研究发展计划(973计划) 2014CB360508

陕西省自然科学基础研究计划项目 2014JM2-6111

陕西省自然科学基础研究计划项目 2013JQ8047

详细信息
    作者简介:

    张新雨   西安理工大学博士研究生.分别于2008、2011年获西安理工大学学士和硕士学位.主要研究方向为信号处理与检测技术.E-mail:xhyzzxy@126.com

    陈亚军   西安理工大学博士研究生, 讲师.2006年获西安理工大学硕士学位.主要研究方向为数字图像处理及机器视觉.E-mail:chenyj@xaut.edu.cn

    通讯作者:

    刘丁   西安理工大学教授, 博士生导师.1982年获陕西机械学院学士学位, 1997年获西安交通大学工学博士学位.主要研究方向为信号处理、智能控制、复系统建模与控制.本文通信作者.E-mail:liud@xaut.edu.cn

Monocrystalline Silicon Diameter Detection Image Threshold Segmentation Method Using Multi-objective Artificial Fish Swarm Algorithm

Funds: 

Key Program of National Natural Science Foundation of China 61533014

Specialized Research Fund for the Doctoral Program of Higher Education of China 20136118130001

National Basic Research Program of China (973 Program) 2014CB360508

Natural Science Basic Research Plan in Shaanxi Province of China 2014JM2-6111

Natural Science Basic Research Plan in Shaanxi Province of China 2013JQ8047

More Information
    Author Bio:

      Ph. D. candidate at the Xi0an University of Technology. He received his bachelor and master degrees all from Xi0an University of Technology in 2008 and 2011, respectively. His research interest covers signal processing and detection technology.E-mail:

      Ph. D. candidate and Lecture at the Xi0an University of Technology. He received his master degree from Xi0an University of Technology in 2006. His research interest covers digital image processing and machine vision.E-mail:

    Corresponding author: LIU Ding   Professor at the Xi0an University of Technology. He received bachelor degree from Shaanxi Mechanical Institute in 1982, Ph. D. degree from Xi0an Jiaotong University in 1997. His research interest covers signal processing, intelligent control, and complex system identification and control. Corresponding author of this paper.E-mail:liud@xaut.edu.cn
  • 摘要: 为提高对硅单晶直径检测图像高亮光环的分割精度, 提出了一种基于多目标人工鱼群算法的二维直方图区域斜分多阈值分割方法.首先设计了一种多目标人工鱼群算法, 并且改进了快速构造Pareto非劣解集的方法, 然后以最大类间方差和最大熵同时作为测度函数, 搜索最优的二维直方图区域斜分分割阈值.仿真结果表明, 所设计的多目标人工鱼群优化算法具有较高的搜索精度, 硅单晶直径检测图像分割实验结果表明, 提出的改进二维直方图区域斜分多阈值分割方法对高亮光环具有较高的分割精度.
  • 图  1  单晶炉直径检测装置示意图

    Fig.  1  Sketch of single crystal furnace diameter detecting device

    图  2  CCD摄像机拍摄的硅单晶图像

    Fig.  2  Image of monocrystalline silicon from the CCD camera

    图  3  硅单晶图像的直方图

    Fig.  3  Histogram of monocrystalline silicon image

    图  4  区域直分法二维直方图

    Fig.  4  2D histogram vertical segmentation

    图  5  区域斜分法二维直方图

    Fig.  5  2D histogram oblique segmentation

    图  6  TDR-150单晶炉直径检测装置实物图

    Fig.  6  Photos of TDR-150 single crystal silicon furnace diameter detecting device

    图  7  硅单晶棒直径测量采集图像

    Fig.  7  Image of monocrystalline silicon diameter detection

    图  8  等径10 mm时四种方法的多阈值分割结果

    Fig.  8  Results of different methods for multi-threshold image segmentation at 10 mm length in body growth

    图  9  等径10 mm时四种方法的二值化图像

    Fig.  9  Binarization image of different methods at 10 mm length in body growth

    图  10  等径400 mm时四种方法的多阈值分割结果

    Fig.  10  Results of different methods for multi-threshold image segmentation at 400 mm length in body growth

    图  11  等径400 mm时四种方法的二值化图像

    Fig.  11  Binarization image of different methods at 400 mm length in body growth

    表  1  ZDT标准测试函数集

    Table  1  ZDT standard test function set

    函数标号目标函数变量数变量范围采样点数
    ZDT1${\left\{ \begin{array}{l} \min {f_1}(\mathit{\boldsymbol{x}}) = {x_1}\\ \min {f_2}(\mathit{\boldsymbol{x}}) = g(\mathit{\boldsymbol{x}})(1 - \sqrt {{x_1}/g(\mathit{\boldsymbol{x}})} )\\ {\rm{s}}.{\rm{t}}.\quad g(\mathit{\boldsymbol{x}}) = 1 + 9(\sum\nolimits_{i = 2}^n {{x_i}} )/(n - 1) \end{array} \right.}$30xi ∈ [0, 1]1 000
    ZDT2${\left\{ \begin{array}{l} \min {f_1}(\mathit{\boldsymbol{x}}) = {x_1}\\ \min {f_2}(\mathit{\boldsymbol{x}}) = g(\mathit{\boldsymbol{x}})(1 - {({x_1}/g(\mathit{\boldsymbol{x}}))^2})\\ {\rm{s}}.{\rm{t}}.\quad g(\mathit{\boldsymbol{x}}) = 1 + 9(\sum\nolimits_{i = 2}^n {{x_i}} )/(n - 1) \end{array} \right.}$30xi ∈ [0, 1]1 000
    ZDT3${\left\{ \begin{array}{l} \min {f_1}(\mathit{\boldsymbol{x}}) = {x_1}\\ \min {f_2}(\mathit{\boldsymbol{x}}) = g(\mathit{\boldsymbol{x}})(1 - \sqrt {({x_1}/g(\mathit{\boldsymbol{x}}))} - {x_1}\sin (10\pi {x_1})/g(\mathit{\boldsymbol{x}}))\\ {\rm{s}}.{\rm{t}}.\quad g(\mathit{\boldsymbol{x}}) = 1 + 9(\sum\nolimits_{i = 2}^n {{x_i}} )/(n - 1) \end{array} \right.}$30xi ∈ [0, 1]1 000
    ZDT4$\left\{ {\begin{array}{*{20}{l}} {\min {f_1}(\mathit{\boldsymbol{x}}) = {x_1}}\\ {\min {f_2}(\mathit{\boldsymbol{x}}) = g(\mathit{\boldsymbol{x}})(1 - \sqrt {{x_1}/g(\mathit{\boldsymbol{x}})} )}\\ {{\rm{s}}.{\rm{t}}.\quad g(\mathit{\boldsymbol{x}}) = 1 + 10(n - 1) + \sum\nolimits_{i = 2}^n {\left( {x_i^2 - 10\cos \left( {4\pi {x_i}} \right)} \right)} } \end{array}} \right.$10xi ∈ [0, 1]
    xi ∈ [-5, 5]
    i=2, …, n
    1 000
    ZDT6$\left\{ {\begin{array}{*{20}{l}} {\min {f_1}(\mathit{\boldsymbol{x}}) = 1 - \exp ( - 4{x_1}){{\sin }^6}(6\pi {x_1})}\\ {\min {f_2}(\mathit{\boldsymbol{x}}) = g(\mathit{\boldsymbol{x}})(1 - {{({x_1}/g(\mathit{\boldsymbol{x}}))}^2})}\\ {{\rm{s}}.{\rm{t}}.\quad g(\mathit{\boldsymbol{x}}) = 1 + 10(n - 1) + \sum\nolimits_{i = 2}^n {\left( {x_i^2 - 10\cos \left( {4\pi {x_i}} \right)} \right)} } \end{array}} \right.$10xi ∈ [0, 1]1 000
    下载: 导出CSV

    表  2  多种算法对比实验结果

    Table  2  Experimental results of different algorithms

    对比方法NSGA-Ⅱp-OCEApeMOPSOMPSOCell本文方法
    测试函数IGD时间(s)IGD时间(s)IGD时间(s)IGD时间(s)IGD时间(s)
    ZDT10.01237 131.890.08266 288.280.01005 689.270.01722 599.120.0088986.87
    ZDT20.02076 367.910.09776 350.720.49953 190.810.00882 598.900.0211829.74
    ZDT30.00606 167.510.05326 531.650.00872 008.900.01161 285.600.0197987.56
    ZDT40.03546 443.920.01916 325.010.01381 107.437.50311 740.710.0597551.46
    ZDT696.80436 391.9195.97826 656.2971.11761 405.68 86.0420917.850.4865651.83
    下载: 导出CSV

    表  3  等径10 mm时各种方法分割结果的性能指标

    Table  3  Results of efficiency among different methods for image segmentation at 10 mm length in body growth

    方法PSNR (dB)分类误差率(%)运行时间(s)
    方法112.84800.800811.0274
    方法230.02280.18494.6387
    方法331.05460.17721.8061
    本文方法35.15890.06267.6084
    下载: 导出CSV

    表  4  等径400 mm时各种方法分割结果的性能指标

    Table  4  Results of efficiency among different methods for image segmentation at 400 mm length in body growth

    方法PSNR (dB)分类误差率(%)运行时间(s)
    方法113.96860.660012.1390
    方法232.14430.10424.6601
    方法332.03410.09442.5306
    本文方法34.81160.08267.5028
    下载: 导出CSV
  • [1] 张新雨, 刘丁, 杨文, 杨延西.基于人工鱼群霍夫变换的单晶硅直径检测.仪器仪表学报, 2014, 35(4):940-947 http://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201404031.htm

    Zhang Xin-Yu, Liu Ding, Yang Wen, Yang Yan-Xi. Diameter detection of single crystal silicon based on artificial fish swarm algorithm-Hough transform. Chinese Journal of Scientific Instrument, 2014, 35(4):940-947 http://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201404031.htm
    [2] Lan C W. Recent progress of crystal growth modeling and growth control. Chemical Engineering Science, 2004, 59(7):1437-1457 doi: 10.1016/j.ces.2004.01.010
    [3] Hurle D T J. Control of diameter in Czochralski and related crystal growth techniques. Journal of Crystal Growth, 1977, 42:473-482 doi: 10.1016/0022-0248(77)90233-0
    [4] Takagi K, Ikeda T, Fukazawa T, Ishii M. Growth striae in single crystals of gadolinium gallium garnet grown by automatic diameter control. Journal of Crystal Growth, 1977, 38(2):206-212 doi: 10.1016/0022-0248(77)90299-8
    [5] Liu D, Liang J L. A Bayesian approach to diameter estimation in the diameter control system of silicon single crystal growth. IEEE Transactions on Instrumentation and Measurement, 2011, 60(4):1307-1315 doi: 10.1109/TIM.2010.2086610
    [6] Cai H M, Yang Z, Cao X H, Xia W M, Xu X Y. A new iterative triclass thresholding technique in image segmentation. IEEE Transactions on Image Processing, 2014, 23(3):1038-1046 doi: 10.1109/TIP.2014.2298981
    [7] Gong M G, Liang Y, Shi J, Ma W P, Ma J J. Fuzzy C-means clustering with local information and kernel metric for image segmentation. IEEE Transactions on Image Processing, 2013, 22(2):573-584 doi: 10.1109/TIP.2012.2219547
    [8] Zhu L J, Gao Y, Appia V, Yezzi A, Arepalli C, Faber T, Stillman A, Tannenbaum A. Automatic delineation of the myocardial wall from CT images via shape segmentation and variational region growing. IEEE Transactions on Bio-Medical Engineering, 2013, 60(10):2887-2895 doi: 10.1109/TBME.2013.2266118
    [9] Jalba A C, Westenberg M A, Roerdink J B T M. Interactive segmentation and visualization of DTI data using a hierarchical watershed representation. IEEE Transactions on Image Processing, 2015, 24(3):1025-1035 doi: 10.1109/TIP.2015.2390139
    [10] Wang F L, Wang F. Void detection in TSVs with X-ray image multithreshold segmentation and artificial neural networks. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014, 4(7):1245-1250 doi: 10.1109/TCPMT.2014.2322907
    [11] Wang D, Xie X, Li G L, Yin Z, Wang Z H. A lumen detection-based intestinal direction vector acquisition method for wireless endoscopy systems. IEEE Transactions on BioMedical Engineering, 2015, 62(3):807-819 doi: 10.1109/TBME.2014.2365016
    [12] 刘健庄, 栗文清.灰度图象的二维Otsu自动阈值分割法.自动化学报, 1993, 19(1):101-105 http://www.aas.net.cn/CN/Y1993/V19/I01/101

    Liu Jian-Zhuang, Li Wen-Qing. The automatic thresholding of gray-level pictures VLA two-dimension Otsu method. Acta Automatica Sinica, 1993, 19(1):101-105 http://www.aas.net.cn/CN/Y1993/V19/I01/101
    [13] 吴一全, 吴文怡, 潘喆.二维直方图区域斜分Otsu阈值分割的快速迭代算法.工程图学学报, 2009, 30(5):89-96 http://www.cnki.com.cn/Article/CJFDTOTAL-GCTX200905016.htm

    Wu Yi-Quan, Wu Wen-Yi, Pan Zhe. A fast iterative algorithm of the Otsu threshold based on two-dimensional histogram oblique segmentation. Journal of Engineering Graphics, 2009, 30(5):89-96 http://www.cnki.com.cn/Article/CJFDTOTAL-GCTX200905016.htm
    [14] 吴一全, 潘喆, 吴文怡.二维直方图区域斜分的最大熵阈值分割算法.模式识别与人工智能, 2009, 22(1):162-168 http://www.cnki.com.cn/Article/CJFDTOTAL-MSSB200901026.htm

    Wu Yi-Quan, Pan Zhe, Wu Wen-Yi. Maximum entropy image thresholding based on two-dimensional histogram oblique segmentation. Pattern Recognition and Artificial Intelligence, 2009, 22(1):162-168 http://www.cnki.com.cn/Article/CJFDTOTAL-MSSB200901026.htm
    [15] Guo W Y, Wang X F, Xia X Z. Two-dimensional Otsu's thresholding segmentation method based on grid box filter. Optik-International Journal for Light and Electron Optics, 2014, 125(18):5234-5240 doi: 10.1016/j.ijleo.2014.05.003
    [16] 范朝冬, 张英杰, 欧阳红林, 肖乐意.基于改进斜分Otsu法的回转窑火焰图像分割.自动化学报, 2014, 40(11):2480-2489 http://www.aas.net.cn/CN/Y2014/V40/I11/2480

    Fan Chao-Dong, Zhang Ying-Jie, Ouyang Hong-Lin, Xiao Le-Yi. Improved Otsu method based on histogram oblique segmentation for segmentation of rotary kiln flame image. Acta Automatica Sinica, 2014, 40(11):2480-2489 http://www.aas.net.cn/CN/Y2014/V40/I11/2480
    [17] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm:NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197 doi: 10.1109/4235.996017
    [18] Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation, 2004, 8(3):256-279 doi: 10.1109/TEVC.2004.826067
    [19] 左兴权, 王春露, 赵新超.一种结合多目标免疫算法和线性规划的双行设备布局方法.自动化学报, 2015, 41(3):528-540 http://www.aas.net.cn/CN/Y2015/V41/I3/528

    Zuo Xing-Quan, Wang Chun-Lu, Zhao Xin-Chao. Combining multi-objective immune algorithm and linear programming for double row layout problem. Acta Automatica Sinica, 2015, 41(3):528-540 http://www.aas.net.cn/CN/Y2015/V41/I3/528
    [20] 朱大林, 詹腾, 张屹, 郑小东.多策略差分进化的元胞多目标粒子群算法.电子学报, 2014, 42(9):1831-1838 http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201409026.htm

    Zhu Da-Lin, Zhan Teng, Zhang Yi, Zheng Xiao-Dong. Cellular multi-objective particle swarm algorithm based on multi-strategy differential evolution. Acta Electronica Sinica, 2014, 42(9):1831-1838 http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201409026.htm
    [21] 胡旺, Yen G G, 张鑫.基于Pareto熵的多目标粒子群优化算法.软件学报, 2014, 25(5):1025-1050 http://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201405009.htm

    Hu Wang, Yen G G, Zhang Xin. Multiobjective particle swarm optimization based on Pareto entropy. Journal of Software, 2014, 25(5):1025-1050 http://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201405009.htm
    [22] 汪照, 李有明, 陈斌, 邹婷.基于鱼群算法的OFDMA自适应资源分配.物理学报, 2013, 62(12):128802-1-128802-7 http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201312072.htm

    Wang Zhao, Li You-Ming, Chen Bin, Zou Ting. OFDMA adaptive resource allocation based on fish swarm algorithm. Acta Physica Sinica, 2013, 62(12):128802-1-128802-7 http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201312072.htm
    [23] 孔维健, 柴天佑, 丁进良, 吴志伟.镁砂熔炼过程全厂电能分配实时多目标优化方法研究.自动化学报, 2014, 40(1):51-61 http://www.aas.net.cn/CN/Y2014/V40/I1/51

    Kong Wei-Jian, Chai Tian-You, Ding Jin-Liang, Wu Zhi-Wei. A real-time multiobjective electric energy allocation optimization approach for the smelting process of magnesia. Acta Automatica Sinica, 2014, 40(1):51-61 http://www.aas.net.cn/CN/Y2014/V40/I1/51
    [24] 夏立荣, 李润学, 刘启玉, 耿志强.基于动态层次分析的自适应多目标粒子群优化算法及其应用.控制与决策, 2015, 30(2):215-221 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201502003.htm

    Xia Li-Rong, Li Run-Xue, Liu Qi-Yu, Geng Zhi-Qiang. An adaptive multi-objective particle swarm optimization algorithm based on dynamic AHP and its application. Control and Decision, 2015, 30(2):215-221 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201502003.htm
    [25] Carreno Jara E. Multi-optimization by using evolutionary algorithms:the p-optimality criteria. IEEE Transactions on Evolutionary Computation, 2014, 18(2):167-179 doi: 10.1109/TEVC.2013.2243455
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  2616
  • HTML全文浏览量:  267
  • PDF下载量:  1060
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-14
  • 录用日期:  2015-12-11
  • 刊出日期:  2016-03-20

目录

    /

    返回文章
    返回