-
摘要: 情感词典作为判断词语和文本情感倾向的重要工具, 其自动构建方法已成为情感分析和观点挖掘领域的一项重要研究内容. 本文整理了现有的中、英文情感词典资源, 同时分别从知识库、语料库、以及两者结合的角度, 归纳现有英文和中文情感词典的构建方法, 分析了各种方法的优缺点, 并总结了情感词典构建中的若干难点问题. 之后, 我们回顾了情感词典性能评估方法及相关评测竞赛. 最后总结了情感词典构建任务的发展前景以及一些亟需解决的问题.Abstract: Sentiment lexicon is an important tool of identifying the sentiment polarity of words and texts. How to automatically construct sentiment lexicons has become a research topic in the field of sentiment analysis and opinion mining. We review the existing sentiment lexicon construction methods, for both English and Chinese languages, from the perspectives of lexicons, corpus, and the combination of the two. We analyze the advantages and disadvantages of each method and point out some special problems in sentiment lexicon construction. We furthermore summarize the evaluation methods and review several competitions related to sentiment lexicon construction. Finally, we discuss the prospect of sentiment lexicon construction, and present some problems that remain to be solved.
-
表 1 常见的通用情感词典简介
Table 1 Common sentiment lexicon introduction
语言 词典名 说明 英文 SentiWordNet 英文中最为著名的一款情感词典, 它基于WordNet, 为WordNet 中每一个同义词集分别给出正、负和客观情感得分. General Inquirer General Inquirer 被认为是最早的一款情感词库兼计算机情感分析程序, 其情绪词来源于《哈佛词典(第4版)》和《拉斯韦尔词典》, 按照情感正负性对词汇进行分类. Opinion Lexicon Bing Liu 发布的一款英文情感词典, 不仅包含情感词, 还包含了拼写错误、语法变形, 俚语以及社交媒体标记等信息. 中文 HowNet 情感词典 董振东和董强建立的以汉语和英语的词语所代表的概念为描述对象, 以揭示概念与概念之间以及概念所具有的属性之间的关系为基本内容的常识知识库, 其中包括情感分析用词语集. DUTIR 情感词汇本体库 大连理工大学信息检索研究室整理和标注的一个中文本体资源. 该资源从不同角度描述一个中文词汇或者短语, 包括词语词性种类、情感类别、情感强度及极性等信息. NTUSD 来源于台湾大学自然语言处理实验室的中文情感极性词典. 表 2 基于知识库的构建方法概述
Table 2 Summary of the lexicon-based approach
方法 概述 参考文献 词关系扩展法 利用已知褒贬的种子词集, 在语义知识库中寻找同义词、反义词等词间关系, 进行扩展, 去噪后得到一份通用情感词典 (Hu 等, 2004)[1], (Strapparava 等, 2004)[4], (Neviarouskaya 等, 2011)[5], (Kim 等, 2004)[6], (Blair-Goldensohn 等, 2008)[7] 迭代路径法 计算知识库中两个词通过同义词(或其他关系) 迭代到彼此需要的次数, 判断两个词极性的相似性, 从而确定未知词的极性 (Kamps 等, 2004)[8], (Hassan 等, 2011)[9], (柳位平等, 2009)[2] 释义扩展法 将同义词的释义也作为训练语料, 或寻找词和释义中词的关系 (Andreevskaia 等, 2006)[10], (Baccianella 等, 2010)[11], (Esuli 等, 2007)[12] 表 3 基于语料库的情感词典方法概述
Table 3 Summary of the corpus-based approach
方法 概述 参考文献 词关系扩展法 利用已知褒贬的种子词集, 在语义知识库中寻找同义词、反义词等词间关系, 进行扩展, 去噪后得到一份通用情感词典 (Hu 等, 2004)[1], (Strapparava 等, 2004)[4], (Neviarouskaya 等, 2011)[5], (Kim 等, 2004)[6], (Blair-Goldensohn 等, 2008)[7] 迭代路径法 计算知识库中两个词通过同义词(或其他关系) 迭代到彼此需要的次数, 判断两个词极性的相似性, 从而确定未知词的极性 (Kamps 等, 2004)[8], (Hassan 等, 2011)[9], (柳位平等, 2009)[2] 释义扩展法 将同义词的释义也作为训练语料, 或寻找词和释义中词的关系 (Andreevskaia 等, 2006)[10], (Baccianella 等, 2010)[11], (Esuli 等, 2007)[12] 表 4 知识库与语料库结合的构建方法
Table 4 Summary of the combined approach of lexicon and corpus
方法 概述 参考文献 关系图半监督法 以词与词之间的相似关系构建词间关系图, 利用已知极性的情感词, 结合图算法, 如标签传播算法, 推测其他情感词的极性 (Esuli 等, 2007)[12], (Huang 等, 2014a)[15], (Tai 等, 2013)[23], (Glava·s 等, 2012)[25], (Peng 等, 2011)[31], (Rao 等, 2009)[32], (Xu 等, 2010)[33], (李荣军等, 2010)[34], (李寿山等, 2013)[35] 自举半监督法 为克服标注语料不足的问题, 先利用少量标注词确定文本片段的极性, 再结合抽取结果, 继续判断未知情感的文本片段 (Volkova 等, 2013)[36], (Zhang 等, 2014)[37], (Weichselbraun等, 2011)[38], (Gao 等, 2013)[39] 深度表示法 根据上下文, 训练词向量, 使得语义相近的词在向量空间上距离较近, 以此来判断词的情感极性 (Tang 等, 2014a)[40], (梁军等, 2014)[41], (杨阳等, 2014)[42], (Tang 等, 2014b)[43] 表 5 情感词典构建中的难点问题
Table 5 Di±cult problems in the construction of sentiment lexicon
方法 概述 参考文献 情感词典领域适应问题 领域A 的语料结合通用词典, 构建领域A 的情感词典;或领域A 的语料结合领域B 的语料与领域B 的词典, 构建领域A 的词典 (Huang 等, 2014a)[15], (Choi 等, 2009)[52], (Du 等, 2010)[53], (Li 等, 2012)[54] 属性-情感词对构建问题 一般情感词和属性词都是成对出现的, 利用这一点, 我们能够找出情感词 有些情感词针对不同的属性, 其情感极性不一定相同, 结合属性词能克服这一点 (Ding 等, 2008)[55], (Lek 等, 2012)[56], (Qiu 等, 2009)[57], (Balahur 等, 2010)[58] 情感词消歧问题 一些情感词包含多种释义, 在判断这些情感词的极性时, 需要先确定其含义, 才能确定其极性 (Dragut 等, 2010)[59], (Wu 等, 2010)[60], (谢松县等, 2014)[61] 含蓄情感词问题 部分词不直接带有情感色彩, 但是在表达时, 结合上下文便会表现出一定的情感色彩, 比如\山", 在描述床板时, 可能是在表达床板有凸起而显得凹凸不平 (Feng 等, 2011)[62], (Zhang 等, 2011)[63], (Balahur 等, 2011)[64] 新情感词问题 所谓新情感词, 主要针对网络上时常会出现的一些新兴词, 这些新词可能是现有词的另类含义, 也可能是由网友自己创造. 发现并识别其情感加入情感词典中 (Brody 等, 2011)[65], (Huang 等, 2014b)[66], (张清亮等, 2011)[67] 情感词情感强度问题 情感强度是情感词在其所在极性上变现出的程度值, 是情感词的一个重要属性, 利用情感强度, 能较为精确地衡量句子或文章的情感极性 (Kim 等)[6], (Williams 等, 2009)[68], (Esuli 等, 2006)[69], (Kumar 等, 2012)[70], (Lu 等, 2010)[71], (柳位平等, 2009)[2], (Gatti 等, 2012)[72] 表 6 相关测评竞赛
Table 6 Related evaluation contest
评测名称 任务编号 评测内容 TREC 2008 3 观点词的识别和极性判断. SemEval 2010 18 对语料中部分极性依赖上下文的形容词进行消歧. SemEval 2014 4.2 判断属性词对应的情感(褒义、贬义、中性、褒贬兼具). SemEval 2015 12.1 提取领域情感词并判断极性. COAE 2008 1、2 分别是情感词的识别和褒贬分析. COAE 2009 1 情感词的识别及分类. COAE 2011 1 领域观点词的抽取与极性判别. COAE 2014 3 给定大规模的微博句子集, 要求自动发现新的词语, 以及每个词语的情感倾向性. -
[1] Hu M Q, Liu B. Mining and summarizing customer reviews. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2004. 168-177 [2] 柳位平, 朱艳辉, 栗春亮, 向华政, 文志强. 中文基础情感词词典构建方法研究. 计算机应用, 2009, 29(10): 2875-2877 doi: 10.3724/SP.J.1087.2009.02875Liu Wei-Ping, Zhu Yan-Hui, Li Chun-Liang, Xiang Hua-Zheng, Wen Zhi-Qiang. Research on building Chinese basic semantic lexicon. Journal of Computer Applications, 2009, 29(10): 2875-2877 doi: 10.3724/SP.J.1087.2009.02875 [3] Liu B. Sentiment Analysis and Opinion Mining. San Rafael, CA: Morgan & Claypool Publishers, 2012. doi: 10.1007/978-1-4899-7502-7_907-1 [4] Strapparava C, Valitutti A. WordNet-affect: an affective extension of wordNet. In: Proceedings of the 2004 International Conference on Language Resources and Evaluation. Lisbon: LREC, 2004. 1083-1086 http://www.oalib.com/references/13143558 [5] Neviarouskaya A, Prendinger H, Ishizuka M. SentiFul: a lexicon for sentiment analysis. IEEE Transactions on Affective Computing, 2011, 2(1): 22-36 doi: 10.1109/T-AFFC.2011.1 [6] Kim S M, Hovy E. Determining the sentiment of opinions. In: Proceedings of the 20th International Conference on Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2004. 1367-1377 http://cn.bing.com/academic/profile?id=2112422413&encoded=0&v=paper_preview&mkt=zh-cn [7] Blair-Goldensohn S, Hannan K, McDonald R, Neylon T, Reis G, Reynar J. Building a sentiment summarizer for local service reviews. In: Proceedings of the WWW2008 Workshop: NLP in the Information Explosion Era. Beijing, China: NLPIX, 2008. 200-207 [8] Kamps J, Marx M, Mokken R J, De Rijke M. Using wordnet to measure semantic orientations of adjectives. In: Proceedings of the 4th International Conference on Language Resources and Evaluation. Paris: European Language Resources Association, 2004. 1115-1118 http://cn.bing.com/academic/profile?id=1951269370&encoded=0&v=paper_preview&mkt=zh-cn [9] Hassan A, Abu-Jbara A, Jha R, Radev D. Identifying the semantic orientation of foreign words. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2011. 592-597 http://cn.bing.com/academic/profile?id=2344367074&encoded=0&v=paper_preview&mkt=zh-cn [10] Andreevskaia A, Bergler S. Mining WordNet for a fuzzy sentiment: sentiment tag extraction from wordNet glosses. In: Proceedings of the 2006 Conference of the European Chapter of the Association for Computational Linguistics. Budapest: EACL, 2006. 209-216 [11] Baccianella S, Esuli A, Sebastiani F. Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: Proceedings of the 2010 International Conference on Language Resources and Evaluation. Malta: LREC, 2010. 2200-2204 https://www.researchgate.net/publication/220746537_SentiWordNet_30_An_Enhanced_Lexical_Resource_for_Sentiment_Analysis_and_Opinion_Mining [12] Esuli A, Sebastiani F. PageRanking wordNet synsets: an application to opinion mining. In: Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics. Prague: Association for Computational Linguistics, 2007. 424-431 http://cn.bing.com/academic/profile?id=2163941230&encoded=0&v=paper_preview&mkt=zh-cn [13] Hatzivassiloglou V, McKeown K R. Predicting the semantic orientation of adjectives. In: Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and Eighth Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 1997. 174-181 http://cn.bing.com/academic/profile?id=2199803028&encoded=0&v=paper_preview&mkt=zh-cn [14] Kanayama H, Nasukawa T. Fully automatic lexicon expansion for domain-oriented sentiment analysis. In: Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2006. 355-363 [15] Huang S, Niu Z D, Shi C Y. Automatic construction of domain-specific sentiment lexicon based on constrained label propagation. Knowledge-Based Systems, 2014, 56: 191-200 doi: 10.1016/j.knosys.2013.11.009 [16] 王科, 夏睿. 一种基于连接关系的情感词典构建方法. 见: 第十四届全国计算语言学学术会议. 广州: 中国中文信息学会, 2015.Wang Ke, Xia Rui. An approach to Chinese sentiment lexicon construction based on conjunction relation. In: Proceedings of the 14th China National Conference on Computational Linguistics. Guangzhou, China: CCL, 2015. [17] Xia Y Q, Cambria E, Hussain A, Zhao H. Word polarity disambiguation using Bayesian model and opinion-level features. Cognitive Computation, 2014, 7(3): 369-380 [18] Church K W, Hanks P. Word association norms, mutual information, and lexicography. Computational Linguistics, 1990, 16(1): 22-29 http://cn.bing.com/academic/profile?id=1593045043&encoded=0&v=paper_preview&mkt=zh-cn [19] Turney P D. Mining the web for synonyms: PMI-IR versus LSA on TOEFL. In: Proceedings of the 12th European Conference on Machine Learning. Berlin Heidelberg: Springer, 2001. 491-502 http://cn.bing.com/academic/profile?id=1567365482&encoded=0&v=paper_preview&mkt=zh-cn [20] Turney P D. Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2002. 417-424 http://cn.bing.com/academic/profile?id=2155328222&encoded=0&v=paper_preview&mkt=zh-cn [21] Turney P D, Littman M L. Measuring praise and criticism: inference of semantic orientation from association. ACM Transactions on Information Systems, 2003, 21(4): 315-346 doi: 10.1145/944012 [22] Krestel R, Siersdorfer S. Generating contextualized sentiment lexica based on latent topics and user ratings. In: Proceedings of the 24th ACM Conference on Hypertext and Social Media. New York, NY: ACM, 2013. 129-138 http://cn.bing.com/academic/profile?id=1972846540&encoded=0&v=paper_preview&mkt=zh-cn [23] Tai Y J, Kao H Y. Automatic domain-specific sentiment lexicon generation with label propagation. In: Proceedings of the 2013 International Conference on Information Integration and Web-based Applications & Services. New York, NY: ACM, 2013. 191-200 [24] Wawer A. Mining co-occurrence matrices for SO-PMI paradigm word candidates. In: Proceedings of the Student Research Workshop at the 13th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2012. 74-80 http://cn.bing.com/academic/profile?id=2159990968&encoded=0&v=paper_preview&mkt=zh-cn [25] Glavaš G, Šnajder J, Bašić B D. Experiments on hybrid corpus-based sentiment lexicon acquisitionIn: Proceedings of the 2012 Workshop on Innovative Hybrid Approaches to the Processing of Textual Data. Stroudsburg, PA, USA: Association for Computational Linguistics, 2012. 1-9 [26] Bollegala D, Weir D, Carroll J. Using multiple sources to construct a sentiment sensitive thesaurus for cross-domain sentiment classification. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA, USA: Association for Computational Linguistics, 2011. 132-141 [27] Velikovich L, Blair-Goldensohn S, Hannan K, McDonald R. The viability of web-derived polarity lexicons. In: Proceedings of the 2010 North American Chapter of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2010. 777-785 [28] 阳爱民, 林江豪, 周咏梅. 中文文本情感词典构建方法. 计算机科学与探索, 2013, 7(11): 1033-1039 http://www.cnki.com.cn/Article/CJFDTOTAL-KXTS201311009.htmYang Ai-Ming, Lin Jiang-Hao, Zhou Yong-Mei. Method on building Chinese text sentiment lexicon. Journal of Frontiers of Computer Science and Technology, 2013, 7(11): 1033-1039 http://www.cnki.com.cn/Article/CJFDTOTAL-KXTS201311009.htm [29] 魏志生, 吉阳生, 罗春勇, 陈家骏. 加入领域先验知识的产生式情感分类模型. 计算机科学与探索, 2011, 5(12): 1105-1113 http://www.cnki.com.cn/Article/CJFDTOTAL-KXTS201112006.htmWei Zhi-Sheng, Ji Yang-Sheng, Luo Chun-Yong, Chen Jia-Jun. Generative sentiment classification model affiliating domain-specific sentiment lexicons. Journal of Frontiers of Computer Science and Technology, 2011, 5(12): 1105-1113 http://www.cnki.com.cn/Article/CJFDTOTAL-KXTS201112006.htm [30] Kaji N, Kitsuregawa M. Building lexicon for sentiment analysis from massive collection of HTML documents. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Prague: Association for Computational Linguistics, 2007. 1075-1083 [31] Peng W, Park D H. Generate adjective sentiment dictionary for social media sentiment analysis using constrained nonnegative matrix factorization. In: Proceedings of the 15th International AAAI Conference on Weblogs and Social Media. Menlo Park, CA: AAAI Press, 2011. 273-280 [32] Rao D, Ravichandran D. Semi-supervised polarity lexicon induction. In: Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2009. 675-682 http://cn.bing.com/academic/profile?id=2089173648&encoded=0&v=paper_preview&mkt=zh-cn [33] Xu G, Meng X F, Wang H F. Build Chinese emotion lexicons using a graph-based algorithm and multiple resources. In: Proceedings of the 23rd International Conference on Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2010. 1209-1217 [34] 李荣军, 王小捷, 周延泉. PageRank模型在中文情感词极性判别中的应用. 北京邮电大学学报, 2010, 33(5): 141-144 http://www.cnki.com.cn/Article/CJFDTOTAL-BJYD201005031.htmLi Rong-Jun, Wang Xiao-Jie, Zhou Yan-Quan. Semantic orientation computing using PageRank model. Journal of Beijing University of Posts and Telecommunications, 2010, 33(5): 141-144 http://www.cnki.com.cn/Article/CJFDTOTAL-BJYD201005031.htm [35] 李寿山, 李逸薇, 黄居仁, 苏艳. 基于双语信息和标签传播算法的中文情感词典构建方法. 中文信息学报, 2013, 27(6): 75-81 http://www.cnki.com.cn/Article/CJFDTOTAL-MESS201306011.htmLi Shou-Shan, Li Yi-Wei, Huang Ju-Ren, Su Yan. Construction of Chinese sentiment lexicon using bilingual information and label propagation algorithm. Journal of Chinese Information Processing, 2013, 27(6): 75-81 http://www.cnki.com.cn/Article/CJFDTOTAL-MESS201306011.htm [36] Volkova S, Wilson T, Yarowsky D. Exploring sentiment in social media: bootstrapping subjectivity clues from multilingual twitter streams. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. Sofia, Bulgaria: Association for Computational Linguistics, 2013. 505-510 http://cn.bing.com/academic/profile?id=2251535218&encoded=0&v=paper_preview&mkt=zh-cn [37] Zhang Z, Singh M P. ReNew: a semi-supervised framework for generating domain-specific lexicons and sentiment analysis. In: Proceedings of the 52nd Annual Meeting on Association for Computational Linguistics. Baltimore, Maryland, USA: Association for Computational Linguistics, 2014. 542-551 http://cn.bing.com/academic/profile?id=2251198526&encoded=0&v=paper_preview&mkt=zh-cn [38] Weichselbraun A, Gindl S, Scharl A. Using games with a purpose and bootstrapping to create domain-specific sentiment lexicons. In: Proceedings of the 20th ACM international conference on Information and knowledge management. New York, NY, USA: ACM, 2011. 1053-1060 http://cn.bing.com/academic/profile?id=2048008937&encoded=0&v=paper_preview&mkt=zh-cn [39] Gao D H, Wei F R, Li W J, Liu X H, Zhou M. Co-training based bilingual sentiment lexicon learning. In: Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 2013. 26-28 [40] Tang D Y, Wei F R, Qin B, Zhou M, Liu T. Building large-scale twitter-specific sentiment lexicon: a representation learning approach. In: Proceedings of the 25th International Conference on Computational Linguistics. Dublin, Ireland: COLING, 2014. 172-182 http://aclweb.org/anthology/C14-1018 [41] 梁军, 柴玉梅, 原慧斌, 昝红英, 刘铭. 基于深度学习的微博情感分析. 中文信息学报, 2014, 28(5): 155-61 http://www.cnki.com.cn/Article/CJFDTOTAL-MESS201405021.htmLiang Jun, Chai Yu-Mei, Yuan Hui-Bin, Zan Hong-Ying, Liu Min. Deep learning for Chinese micro-blog sentiment analysis. Journal of Chinese Information Processing, 2014, 28(5): 155-61 http://www.cnki.com.cn/Article/CJFDTOTAL-MESS201405021.htm [42] 杨阳, 刘龙飞, 魏现辉, 林鸿飞. 基于词向量的情感新词发现方法. 山东大学学报(理学版), 2014, 49(11): 51-58 http://www.cnki.com.cn/Article/CJFDTOTAL-SDDX201411008.htmYang Yang, Liu Long-Fei, Wei Xian-Hui, Lin Hong-Fei. New methods for extracting emotional words based on distributed representations of words. Journal of Shandong University (Natural Science), 2014, 49(11): 51-58 http://www.cnki.com.cn/Article/CJFDTOTAL-SDDX201411008.htm [43] Tang D Y, Wei F R, Yang N, Zhou M, Liu T, Qin B. Learning sentiment-specific word embedding for twitter sentiment classification. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Baltimore, Maryland, USA: Association for Computational Linguistics, 2014. 1555-1565 http://cn.bing.com/academic/profile?id=2250879510&encoded=0&v=paper_preview&mkt=zh-cn [44] Collobret R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P. Natural language processing (almost) from scratch. The Journal of Machine Learning Research, 2011, 12(1): 2493-2537 http://cn.bing.com/academic/profile?id=2158899491&encoded=0&v=paper_preview&mkt=zh-cn [45] Mikolov T, Sutskever I, Chen K, Corrado G S, Dean J. Distributed representations of words and phrases and their compositionality. In: Proceedings of the 2013 Advances in Neural Information Processing Systems. Nanjing: NIPS, 2013: 3111-3119 [46] 杨超, 冯时, 王大玲, 杨楠, 于戈. 基于情感词典扩展技术的网络舆情倾向性分析. 小型微型计算机系统, 2010, 31(4): 691-695 http://cdmd.cnki.com.cn/Article/CDMD-10145-1013109396.htmYang Chao, Feng Shi, Wang Da-Ling, Yang Nan, Yu Ge. Analysis on web public opinion orientation based on extending sentiment lexicon. Journal of Chinese Computer Systems, 2010, 31(4): 691-695 http://cdmd.cnki.com.cn/Article/CDMD-10145-1013109396.htm [47] 周咏梅, 杨佳能, 阳爱民. 面向文本情感分析的中文情感词典构建方法. 山东大学学报(工学版), 2013, 43(6): 27-33 http://www.cnki.com.cn/Article/CJFDTOTAL-SDGY201306006.htmZhou Yong-Mei, Yang Jia-Neng, Yang Ai-Ming. A method on building Chinese sentiment lexicon for text sentiment analysis. Journal of Shandong University (Engineering Science), 2013, 43(6): 27-33 http://www.cnki.com.cn/Article/CJFDTOTAL-SDGY201306006.htm [48] 李勇敢, 周学广, 孙艳, 张焕国. 结合依存关联分析和规则统计分析的情感词库构建方法. 武汉大学学报(理学版), 2013, 59(5): 491-498 http://www.cnki.com.cn/Article/CJFDTOTAL-WHDY201305016.htmLi Yong-Gan, Zhou Xue-Guang, Sun Yan, Zhang Huan-Guo. The study of construction for emotion thesaurus based on dependency parsing combined with rules and statistics methods. Journal of Wuhan University (Natural Science Edition), 2013, 59(5): 491-498 http://www.cnki.com.cn/Article/CJFDTOTAL-WHDY201305016.htm [49] 殷春霞, 彭勤科. 利用复杂网络为自由评论鉴定词汇情感倾向性. 自动化学报, 2012, 38(3): 389-398 doi: 10.3724/SP.J.1004.2012.00389Yin Chun-Xia, Peng Qin-Ke. Identifying word sentiment orientation for free comments via complex network. Acta Automatica Sinica, 2012, 38(3): 389-398 doi: 10.3724/SP.J.1004.2012.00389 [50] He Y L, Alani H, Zhou D Y. Exploring English lexicon knowledge for Chinese sentiment analysis. In: Proceedings of CIPS-SIGHAN Joint Conference on Chinese Language Processing. Beijing, China: ORO, 2010. 91-104 [51] 王昌厚, 王菲. 使用基于模式的Bootstrapping方法抽取情感词. 计算机工程与应用, 2014, 50 (1): 127-129 http://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201401028.htmWang Chang-Hou, Wang Fei. Extracting sentiment words using pattern based Bootstrapping method. Computer Engineering and Applications, 2014, 50(1): 127-129 http://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201401028.htm [52] Choi Y, Cardie C. Adapting a polarity lexicon using integer linear programming for domain-specific sentiment classification. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2009. 590-598 http://cn.bing.com/academic/profile?id=2136680862&encoded=0&v=paper_preview&mkt=zh-cn [53] Du W F, Tan S B, Cheng X Q, Yun X C. Adapting information bottleneck method for automatic construction of domain-oriented sentiment lexicon. In: Proceedings of the 3rd ACM International Conference on Web Search and Data Mining. New York, NY, USA: ACM, 2010. 111-120 http://www.oalib.com/references/16891436 [54] Li F T, Pan S J, Jin O, Yang Q, Zhu X Y. Cross-domain co-extraction of sentiment and topic lexicons. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2012. 410-419 http://cn.bing.com/academic/profile?id=2148966043&encoded=0&v=paper_preview&mkt=zh-cn [55] Ding X, Liu B, Yu P S. A holistic lexicon-based approach to opinion mining. In: Proceedings of the 2008 International Conference on Web Search and Data Mining. New York, NY, USA: ACM, 2008. 231-240 http://cn.bing.com/academic/profile?id=1964613733&encoded=0&v=paper_preview&mkt=zh-cn [56] Lek H H, Poo D C C. Sentix: an aspect and domain sensitive sentiment lexicon. In: Proceedings of the 2012 IEEE 24th International Conference on Tools with Artificial Intelligence. Washington, DC, USA: IEEE Computer Society, 2012. 261-268 [57] Qiu G, Liu B, Bu J J, Chen C. Expanding domain sentiment lexicon through double propagation. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2009. 1199-1204 [58] Balahur A, Montoyo A. OpAL: applying opinion mining techniques for the disambiguation of sentiment ambiguous adjectives in SemEval-2 task 18. In: Proceedings of the 5th International Workshop on Semantic Evaluation. Stroudsburg, PA, USA: Association for Computational Linguistics, 2010. 444-447 http://dl.acm.org/citation.cfm?id=1859763 [59] Dragut E C, Yu C, Sistla P, Meng W Y. Construction of a sentimental word dictionary. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2010. 1761-1764 [60] Wu Y F, Wen M M. Disambiguating dynamic sentiment ambiguous adjectives. In: Proceedings of the 23rd International Conference on Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2010. 1191-1199 [61] 谢松县, 刘博, 王挺. 应用语义关系自动构建情感词典. 国防科技大学学报, 2014, 36(3): 111-115 http://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201403020.htmXie Song-Xian, Liu Bo, Wang Ting. Applying semantic relations to construct construct sentiment lexicon automaticlly. Journal of National University of Defense Technology, 2014, 36(3): 111-115 http://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201403020.htm [62] Feng S, Bose R, Choi Y. Learning general connotation of words using graph-based algorithms. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. Edinburgh, Scotland, UK: Association for Computational Linguistics, 2011. 1092-1103 http://cn.bing.com/academic/profile?id=2180724871&encoded=0&v=paper_preview&mkt=zh-cn [63] Zhang L, Liu B. Identifying noun product features that imply opinions. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA, USA: Association for Computational Linguistics, 2011. 575-580 http://cn.bing.com/academic/profile?id=2165379166&encoded=0&v=paper_preview&mkt=zh-cn [64] Balahur A, Hermida J M, Montoyo A. Detecting implicit expressions of sentiment in text based on commonsense knowledge. In: Proceedings of the 2nd Workshop on Computational Approaches to Subjectivity and Sentiment Analysis. Stroudsburg, PA, USA: Association for Computational Linguistics, 2011. 53-60 [65] Brody S, Diakopoulos N. Cooooooooooooooollllllllllllll!!!!!!!!!!!!!!: using word lengthening to detect sentiment in microblogs. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2011. 562-570 http://cn.bing.com/academic/profile?id=2152815769&encoded=0&v=paper_preview&mkt=zh-cn [66] Huang M L, Ye B R, Wang Y C, Chen H Q, Cheng J J, Zhu X Y. New word detection for sentiment analysis. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Baltimore, Maryland, USA: Association for Computational Linguistics, 2014. 531-541 http://www.aclweb.org/anthology/P14-1050 [67] 张清亮, 徐健. 网络情感词自动识别方法研究. 现代图书情报技术, 2011, 27(10): 24-28 http://www.cnki.com.cn/Article/CJFDTOTAL-XDTQ201110007.htmZhang Qing-Liang, Xu Jian. Research on automatic extraction of web sentiment words. Journal of Library and Information Technology, 2011, 27(10): 24-28 http://www.cnki.com.cn/Article/CJFDTOTAL-XDTQ201110007.htm [68] Williams G K, Anand S S. Predicting the polarity strength of adjectives using wordnet. In: Proceedings of the Third International ICWSM Conference. Menlo Park, CA: AAAI Press, 2009. 346-349 [69] Esuli A, Sebastiani F. Sentiwordnet: a publicly available lexical resource for opinion mining. In: Proceedings of the 2006 Language Resources and Evaluation. Genoa, Italy: LREC, 2006. 417-422 http://www.oalib.com/references/16886054 [70] Kumar A, Sebastian T M. Sentiment analysis on twitter. International Journal of Computer Science Issues, 2012, 9(4): 372-378 http://cn.bing.com/academic/profile?id=2160969591&encoded=0&v=paper_preview&mkt=zh-cn [71] Lu Y, Kong X F, Quan X J, Liu W Y, Xu Y L. Exploring the sentiment strength of user reviews. Web-Age Information Management. Berlin Heidelberg: Springer, 2010. 471-482 http://cn.bing.com/academic/profile?id=1599391609&encoded=0&v=paper_preview&mkt=zh-cn [72] Gatti L, Guerini M. Assessing sentiment strength in words prior polarities. In: Proceedings of the 23th International Conference on Computational Linguistics. Mumbai: CSCL, 2012. 361-370 [73] Schneider A, Dragut E. Towards debugging sentiment lexicons. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Beijing, China: Association for Computational Linguistics, 2015. 1024-1034 http://www.aclweb.org/anthology/P/P15/P15-1099.pdf [74] Mohammad S, Dunne C, Dorr B. Generating high-coverage semantic orientation lexicons from overtly marked words and a thesaurus. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2009. 599-608 http://cn.bing.com/academic/profile?id=2160250477&encoded=0&v=paper_preview&mkt=zh-cn [75] Wilson T, Wiebe J, Hoffmann P. Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of the 2005 Conference on Human Language Technology and Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2005. 347-354 http://cn.bing.com/academic/profile?id=2022204871&encoded=0&v=paper_preview&mkt=zh-cn [76] 杨鼎, 阳爱民. 一种基于情感词典和朴素贝叶斯的中文文本情感分类方法. 计算机应用研究, 2010, 27(10): 3737-3739 http://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201010037.htmYang Ding, Yang Ai-Min. Classification approach of Chinese texts sentiment based onsemantic lexicon and naive Bayesian. Application Research of Computers, 2010, 27(10): 3737-3739 http://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201010037.htm [77] 赵妍妍, 秦兵, 刘挺. 文本情感分析. 软件学报, 2010, 21(8): 1834-1848 doi: 10.3724/SP.J.1001.2010.03832Zhao Yan-Yan, Qin Bing, Liu Ting. Sentiment analysis. Journal of Software, 2010, 21(8): 1834-1848 doi: 10.3724/SP.J.1001.2010.03832 [78] Lee Y, Na S H, Kim J, Nam S H, Jng H Y, Lee J H. KLE at TREC 2008 blog track: blog post and feed retrieval. In: Proceedings of 2008 Text REtrieval Conference. Pohang, South Korea: Pohang University of Science and Technology (South Korea), 2008. [79] Xu R F, Xu J, Kit C. HITSZ_CITYU: Combine collocation, context words and neighboring sentence sentiment in sentiment adjectives disambiguation. In: Proceedings of the 5th International Workshop on Semantic Evaluation. Stroudsburg, PA, USA: Association for Computational Linguistics, 2010. 448-451 http://cn.bing.com/academic/profile?id=1735306610&encoded=0&v=paper_preview&mkt=zh-cn [80] Toh Z Q, Wang W T. DLIREC: aspect term extraction and term polarity classification system. In: Proceedings of the 8th International Workshop on Semantic Evaluation. Dublin, Ireland: IWSE, 2014. 235-240 [81] Saias J, Ramalho R R. Sentiue: target and aspect based sentiment analysis in SemEval-2015 task 12. In: Proceedings of the 9th International Workshop on Semantic Evaluation. Denver, Colorado: Association for Computational Linguistics, 2015. 767-771 [82] 刘军, 刘全升, 陈漠沙, 宋鸿彦, 黄高辉, 张潇君, 姚天昉. 第一届中文倾向性分析评测结果浅析. 见: 第一届中文倾向性分析评测研讨会论文集. 北京: 中国中文信息学会, 2008. 125-141Liu Jun, Liu Quan-Sheng, Chen Mo-Sha, Song Hong-Yan, Huang Gao-Hui, Zhang Xiao-Jun, Yao Tian-Fang. Analysis on the evaluation results of the first Chinese orientation analysis evaluation. In: Proceedings of the 1st Conference on Chinese Opinion Analysis Evaluation. Beijing, China: COAE, 2008. 125-141 [83] 徐戈, 蒙新泛, 王厚峰. 基于多模态学习的情感评级. 见: 第二届中文倾向性分析评测研讨会论文集. 上海: 中国中文信息学会, 2009. 24-29Xu Ge, Meng Xin-Fan, Wang Hou-Feng. Emotion ranking based on multi-modality learning. In: Proceedings of the 2nd Conference on Chinese Opinion Analysis Evaluation. Shanghai, China: COAE, 2009. 24-29 [84] 徐睿峰, 王亚伟, 徐军, 张玥, 郑海清, 桂林, 叶璐. 基于多知识源融合和多分类器表决的中文观点分析. 见: 第三届中文倾向性分析评测会议 (COAE 2011)论文集. 济南: 中国中文信息学会, 2011. 77-87Xu Rui-Feng, Wang Ya-Wei, Xu Jun, Zhang Yue, Zheng Hai-Qing, Gui Lin, Ye Lu. Chinese opinion analysis based on multi knowledge integration and multi classifier voting. In: Proceedings of the 3rd Conference on Chinese Opinion Analysis Evaluation. Ji'nan, China: COAE, 2011. 77-87 [85] 廖健, 王素格, 李德玉, 陈鑫. 基于构词规则与互信息的微博情感新词发现与判定. 见: 第六届中文倾向性分析评测会议论文集. 昆明: 中国中文信息学会, 2014. 90-96Liao Jian, Wang Su-Ge, Li De-Yu, Chen Xin. Using word-formation rules and mutual information for new sentiment word identification in microblogs. In: Proceedings of the 6th Conference on Chinese Opinion Analysis Evaluation. Kunming, China: COAE, 2014. 90-96