2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于笔画特征的在线笔迹匹配算法

邹杰 孙宝林 於俊

邹杰, 孙宝林, 於俊. 基于笔画特征的在线笔迹匹配算法. 自动化学报, 2016, 42(11): 1744-1757. doi: 10.16383/j.aas.2016.c150563
引用本文: 邹杰, 孙宝林, 於俊. 基于笔画特征的在线笔迹匹配算法. 自动化学报, 2016, 42(11): 1744-1757. doi: 10.16383/j.aas.2016.c150563
ZOU Jie, SUN Bao-Lin, YU Jun. Online Handwriting Matching Algorithm Based on Stroke Features. ACTA AUTOMATICA SINICA, 2016, 42(11): 1744-1757. doi: 10.16383/j.aas.2016.c150563
Citation: ZOU Jie, SUN Bao-Lin, YU Jun. Online Handwriting Matching Algorithm Based on Stroke Features. ACTA AUTOMATICA SINICA, 2016, 42(11): 1744-1757. doi: 10.16383/j.aas.2016.c150563

基于笔画特征的在线笔迹匹配算法

doi: 10.16383/j.aas.2016.c150563
基金项目: 

浙江大学计算机辅助与图形学国家重点实验室开放课题 A1501

湖北省自然科学基金重点项目 2014CFA055

国家自然科学基金 61572012, 61303150

湖北省高等学校优秀中青年科技创新团队计划项目 T201631

中央高校基本科研业务费专项资金重要方向培育基金项目 WK2350000002

详细信息
    作者简介:

    邹杰 博士, 武汉工商学院计算机科学与技术系讲师.主要研究方向为模式识别, 在线笔迹身份认证和图像处理.E-mail:qvbso@mail.ustc.edu.cn

    孙宝林 博士, 武汉工商学院计算机科学与技术系教授.主要研究方向为现场总线和实时以太网.E-mail:blsun@163.com

    通讯作者:

    於俊 博士, 中国科学技术大学自动化系副研究员.主要研究方向为智能人机交互和智能机器人.E-mail:harryjun@ustc.edu.cn

Online Handwriting Matching Algorithm Based on Stroke Features

Funds: 

the Open Project Program of the State Key Laboratory of CAD and CG of Zhe-jiang University A1501

the Key Project Natu-ral Science Foundation of Hubei Province 2014CFA055

National Natural Science Foundation of China 61572012, 61303150

Hubei Province High School Outstanding Young Science and Technol-ogy Innovation Team Project T201631

the Fundamental Research Funds for the Central Universities WK2350000002

More Information
    Author Bio:

    Ph.,D., lecturer in the Department of Computer Science and Technology, Wuhan Technology and Business University. His research interest covers pattern recognition, online handwriting verification, and image processing.

    Ph.,D., professor in the Department of Computer Science and Technology, Wuhan Technology and Business University. His research interest covers field bus and real-time Etherent.

    Corresponding author: YU Jun Ph.,D., associate professor in the Department of Automation, University of Science and Technology of China. His research interest covers human computer interaction and intelligent robot. Corresponding author of this paper.
  • 摘要: 针对现有在线笔迹匹配算法鲁棒性不强的问题,本文提出将合并规则和跳跃规则引入到动态规划的迭代过程,以跳跃规则应对书写中的多、漏笔现象,以合并规则应对因多种书写不一致造成的分割点多提取、漏提取现象.在累计差异矩阵计算中,提出以笔画特征,特别是笔画形状信息来度量笔画间的差异.在SVC2004和SUSIG签名数据库上与现有主要在线笔迹匹配算法进行比较.实验结果表明,本文方法能较好应对多种局部书写和分割的不一致,从而获得更准确、鲁棒的笔画对应关系.
  • 图  1  按视觉关键点得到的笔迹分割结果示例

    Fig.  1  Examples of handwriting segmented by perceptually important points

    图  2  因弯曲程度不够造成的笔迹分割不一致

    Fig.  2  Inconsistent segmentation caused by over and\\ less curving strokes

    图  3  因多笔造成的笔迹分割不一致

    Fig.  3  Inconsistent segmentation caused by superfluous and loss strokes

    图  4  跳过测试笔迹的第j段笔画(左)和跳过模板笔迹的第i段笔画(右)

    Fig.  4  Jumping the jth stroke of testing handwriting(left) and jumping the ith stroke of template (right) handwriting

    图  5  2:1 (左)和1:2 (右)合并规则

    Fig.  5  2:1 (left) and 1:2 (right) merging rule

    图  6  两个汉字笔迹"九"

    Fig.  6  Two handwriting examples of \\Chinese character"nine"

    图  7  两段归一化后"九"字的横竖弯笔画

    Fig.  7  Two normalized compound strokes in Chinese character"nine"

    图  8  笔画分割结果,D2D3d2为角度极大值点

    Fig.  8  Two compound strokes segmented by angle maximum points D2,D3,and d2

    图  9  采用经典DTW得到的点点对应关系

    Fig.  9  Point-to-point corresponding calculated by the classical DTW

    图  10  纠偏后的分割点对应关系

    Fig.  10  Revised segmentation point corresponding

    图  11  以相邻分割点构成的向量近似表示笔画

    Fig.  11  Stroke approximated by vectors consisting of adjacent segmentation points

    图  12  由人工给出的四组笔迹分割点的理想对应关系

    Fig.  12  Four group of ideal segmentation point corresponding

    图  13  本文方法和已有笔画差异度量方法在匹配结果上的比较 (第1栏和第2栏给出了本文方法的匹配结果示例,第3栏和第4栏给出了相同笔迹在已有方法上的匹配结果示例)

    Fig.  13  Comparison of matching results based on stroke difference measurement between the proposed (the 1 and 2 columns)and existing methods (the 3 and 4 columns)

    图  14  本文方法与现有方法在SVC2004上匹配结果示例

    Fig.  14  Examples of matching result obtained by the proposed and the existing methods on SVC2004

    图  15  本文方法与现有方法在SUSIG上匹配结果示例

    Fig.  15  Examples of matching result obtained by the proposed and the existing methods on SUSIG

    图  16  本文方法存在的问题和不足示例

    Fig.  16  Examples of remaining shortcomings of our method

    表  1  $\beta$ 取值对平均匹配错误率(%)的影响

    Table  1  Average matching error rate (%) for various values of $\beta$

    β平均匹配错误率
    0.0759.53
    0.108.93
    0.1258.23
    0.157.92
    0.1757.91
    0.207.96
    0.2258.32
    0.258.53
    下载: 导出CSV

    表  2  $\eta$ 取值对平均匹配错误率 (%) 的影响

    Table  2  Average matching error rate (%) for various values of $\eta$

    η平均匹配错误率
    0.058.26
    0.0758.07
    0.107.91
    0.1257.99
    0.158.03
    1.1758.57
    下载: 导出CSV

    表  3  $\alpha$ 取值对平均匹配错误率(%)的影响

    Table  3  Average matching error rate (%) for various values of $\alpha$

    α平均匹配错误率
    –0.512.13
    011.26
    0.510.54
    19.56
    1.58.33
    27.06
    2.57.31
    37.91
    3.58.42
    48.79
    下载: 导出CSV

    表  4  不同合并规则对匹配错误率 (%) 的影响

    Table  4  Average matching error rate (%) for different merging rule combination schemes

    组合方案合并规则序号集合平均匹配错误率
    方案 1[a]11.21
    方案 2[a] ~ [c]8.33
    方案 3[a] ~ [e]7.12
    方案 4[a] ~ [f ]6.04
    方案 5[a] ~ [h]6.52
    方案 6[a] ~ [j]7.31
    下载: 导出CSV

    表  5  本文笔画差异度量方法与已有方法比较

    Table  5  Comparison of the proposed stroke difference measurement method and the existing method

    位置[29-30]速度[31]曲率[32]本文方法
    平均匹配错误率 (%)12.4216.0517.426.04
    下载: 导出CSV

    表  6  SVC2004的签名分组表

    Table  6  SVC2004 signature group table

    组号签名组序号
    13, 4, 6, 13, 15, 16, 27, 29, 31, 40
    22, 5, 9, 11, 12, 14, 17, 18, 28, 30
    31, 8, 19, 20, 22, 24, 25, 32, 36, 38
    47, 10, 21, 23, 26, 33, 34, 35, 37, 39
    下载: 导出CSV

    表  7  SUSIG的签名分组表

    Table  7  SUSIG signature group table

    组号签名组序号
    19, 11, 13, 14, 16, 18, 19, 20, 23, 24, 25, 28, 36, 37, 46, 53, 54, 65, 69, 88, 105, 106, 113
    21, 2, 4, 8, 10, 22, 39, 44, 55, 56, 67, 70, 71, 73, 80, 82, 84, 85, 90, 92, 93, 108, 109, 114
    33, 21, 26, 38, 40, 53, 59, 61, 64, 66, 74, 76, 77, 83, 86, 89, 91, 94, 97, 99, 100, 101, 103, 111
    415, 29, 32, 34, 42, 57, 58, 60, 62, 63, 64, 72, 75, 78, 79, 81, 87, 95, 96, 98, 107, 110, 115
    下载: 导出CSV

    表  8  在SVC2004和SUSIG上,本文方法与已有方法在4组笔迹上平均匹配错误率 (%) 比较

    Table  8  Average matching error rate (%) comparison on four group signatures between our method and existing methods on SVC2004 and SUSIG

    第 1 组第 2 组第 3 组第 4 组
    SVC2004SUSIGSVC2004SUSIGSVC2004SUSIGSVC2004SUSIG
    Cpalka et al.[30]8.9610.1715.7616.5618.8520.9623.4226.85
    Barkoula et al.[25]10.1211.8515.7316.9819.3121.2123.2726.23
    Mohammadi et al.[21]9.5410.3216.5317.3420.1424.4425.2129.45
    Wang et al.[12]8.729.9716.2317.8520.8120.6424.8323.80
    Lee et al.[23]8.149.0715.1317.5719.6225.1727.0428.12
    Quan et al.[20]19.1420.1826.3126.2131.2530.4735.2134.19
    Li et al.[22]12.3413.9720.1419.3918.9325.3225.3129.93
    Hao et al.[24]9.3113.8317.0117.6317.4820.8523.1826.21
    本文方法4.565.485.146.525.577.418.8910.32
    下载: 导出CSV
  • [1] Mohammed R A, Nabi R M, Mahmood S M R, Nabi R M. State-of-the-art in handwritten signature verification system. In: Proceedings of the 2015 International Conference on Computational Science and Computational Intelligence. Las Vegas, NV: IEEE, 2015. 519-525
    [2] Yu J, Wang Z F. A video, text, and speech-driven realistic 3-D virtual head for human-machine interface. IEEE Transactions on Cybernetics, 2015, 45(5): 991-1002 doi: 10.1109/TCYB.2014.2341737
    [3] 李昕, 丁晓青, 彭良瑞. 一种基于微结构特征的多文种文本无关笔迹鉴别方法. 自动化学报, 2009, 35(9): 1199-1208 doi: 10.3724/SP.J.1004.2009.01199

    Li Xin, Ding Xiao-Qing, Peng Liang-Rui. A microstructure feature based text-independent method of writer identification for multilingual handwritings. Acta Automatica Sinica, 2009, 35(9): 1199-1208 doi: 10.3724/SP.J.1004.2009.01199
    [4] 陈晓苏, 吴振华, 肖道举. 一种基于签名分段和HMM的离线中文签名验证方法. 自动化学报, 2007, 32(2): 205-210 http://www.aas.net.cn/CN/abstract/abstract13566.shtml

    Chen Xiao-Su, Wu Zhen-Hua, Xiao Dao-Ju. Off-line Chinese signature verification based on segmentation and HMM. Acta Automatica Sinica, 2007, 32(2): 205-210 http://www.aas.net.cn/CN/abstract/abstract13566.shtml
    [5] Liu Y S, Yang Z H, Yang L H. Online signature verification based on DCT and sparse representation. IEEE Transactions on Cybernetics, 2015, 45(11): 2498-2511 doi: 10.1109/TCYB.2014.2375959
    [6] Parodi M, Gómez J C. Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinations. Pattern Recognition, 2014, 47(1): 128-140
    [7] Nautsch A, Rathgeb C, Busch C. Bridging gaps: an application of feature warping to online signature verification. In: Proceedings of the 2014 International Carnahan Conference on Security Technology (ICCST). Rome, Italy: IEEE, 2014. 1-6
    [8] 焦慧敏, 王党校, 张玉茹, 方磊. 基于书写摩擦力的签名识别方法. 自动化学报, 2011, 37(7): 883-890 http://www.aas.net.cn/CN/abstract/abstract17500.shtml

    Jiao Hui-Min, Wang Dang-Xiao, Zhang Yu-Ru, Fang Lei. Signature verification using handwriting friction force. Acta Automatica Sinica, 2011, 37(7): 883-890 http://www.aas.net.cn/CN/abstract/abstract17500.shtml
    [9] Pirlo G, Cuccovillo V, Impedovo D, Mignone P. On-line signature verification by multi-domain classification. In: Proceedings of the 14th International Conference on Frontiers in Handwriting Recognition (ICFHR). Heraklion, Greece: IEEE, 2014. 67-72
    [10] 王梓合. 练习摹仿笔迹鉴定研究 [硕士学位论文], 西南政法大学, 中国, 2010.

    Wang Zi-He. Identification of Practicing Imitating Handwriting [Master dissertation], Southwest University of Political Science and Law, China, 2010.
    [11] Ansari A Q, Kour J. Uniform segmentation in online signature verification. In: Proceedings of the 2015 Annual IEEE India Conference. New Delhi, India: IEEE, 2015. 1-6
    [12] Wang K Y, Wang Y H, Zhang Z X. On-line signature verification using segment-to-segment graph matching. In: Proceedings of the 2011 International Conference on Document Analysis and Recognition. Beijing, China: IEEE, 2011. 804 -808
    [13] Wirotius M, Ramel J Y, Vincent N. Selection of points for on-line signature comparison. In: Proceedings of the 9th International Workshop on Frontiers in Handwriting Recognition (IWFHR). Tokyo, Japan: IEEE, 2004. 503-508
    [14] 蔡洪滨, 施泽生, 范晓峰, 黄浩, 尹社广. 一种基于小波变换提取拐点的手写签名认证方法. 中国图象图形学报, 2003, 8(3): 261- 265 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200303004.htm

    Cai Hong-Bin, Shi Ze-Sheng, Fan Xiao-Feng, Huang Hao, Yin She-Guang. A handwritten signature verification method based on wavelet transform to pick up inflection points. Journal of Image and Graphics, 2003, 8(3): 261-265 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200303004.htm
    [15] Cpalka K, Zalasiński M, Rutkowski L. A new algorithm for identity verification based on the analysis of a handwritten dynamic signature. Applied Soft Computing, 2016, 43: 47- 56 doi: 10.1016/j.asoc.2016.02.017
    [16] Cpalka K, Zalasiński M. On-line signature verification using vertical signature partitioning. Expert Systems with Applications, 2014, 41(9): 4170-4180 doi: 10.1016/j.eswa.2013.12.047
    [17] 郭宏, 金先级. 一种基于签名动态特征的特殊点提取算法. 武汉科技大学学报(自然科学版), 2001, 24(2): 186-188 http://www.cnki.com.cn/Article/CJFDTOTAL-YEKJ200102024.htm

    Guo Hong, Jin Xian-Ji. The extract algorithm of special points in signature based on dynamic information. Journal of Wuhan University of Science and Technology (Natural Science Edition), 2001, 24(2): 186-188 http://www.cnki.com.cn/Article/CJFDTOTAL-YEKJ200102024.htm
    [18] Brault J J, Plamondon R. Segmenting handwritten signatures at their perceptually important points. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(9): 953-957 doi: 10.1109/34.232079
    [19] 全中华. 基于动态手写签名的身份认证研究 [博士学位论文], 中国科学技术大学, 中国, 2007.

    Quan Zhong-Hua. A Study of the Authentication Based on Online Signatures [Ph.D. dissertation], University of Science and Technology of China, China, 2007.
    [20] Quan Z H, Ji H W. Aligning and segmenting signatures at their crucial points through DTW. In: Proceedings of the 2005 International Conference on Intelligent Computing. Hefei, China: Springer, 2005. 49-58
    [21] Mohammadi M H, Faez K. Matching between important points using dynamic time warping for online signature verification [Online], available: http://www.cyberjournals.com/ Papers/Jan2012/01.pdf, June 24, 2016
    [22] Li B, Zhang D, Wang K Q. Improved critical point correspondence for on-line signature verification. International Journal of Information Technology, 2006, 12(7): 45-56 http://cn.bing.com/academic/profile?id=179725273&encoded=0&v=paper_preview&mkt=zh-cn
    [23] Lee J, Yoon H S, Soh J, Chun B T, Chung Y K. Using geometric extrema for segment-to-segment characteristics comparison in online signature verification. Pattern Recognition, 2004, 37(1): 93-103 doi: 10.1016/S0031-3203(03)00229-2
    [24] Hao F, Chan C W. Online signature verification using a new extreme points warping technique. Pattern Recognition Letter, 2003, 24(16): 2943-2951 doi: 10.1016/S0167-8655(03)00155-7
    [25] Barkoula K, Economou G, Fotopoulos S. Online signature verification based on signatures turning angle representation using longest common subsequence matching. International Journal on Document Analysis and Recognition, 2013, 16(3): 261-272 doi: 10.1007/s10032-012-0193-9
    [26] Zhang K, Pratikakis I, Cornelis J, Nyssen E. Using landmarks to establish a point-to-point correspondence between signatures. Pattern Analysis and Applications, 2000, 3(1): 69-75 doi: 10.1007/s100440050007
    [27] Ansari A Q, Hanmandlu M, Kour J, Singh A K. Online signature verification using segment-level fuzzy modelling. IET Biometrics, 2014, 3(3): 113-127 doi: 10.1049/iet-bmt.2012.0048
    [28] 李彬. 联机手写签名鉴别技术的研究 [博士学位论文], 哈尔滨工业大学, 中国, 2006.

    Li Bin. Research on the Technology of Online Handwritten Signature Verification. [Ph.D. dissertation], Harbin Institute of Technology, China, 2006.
    [29] Ibrahim M T, Khan M A, Alimgeer K S, Khan M K, Taj I A, Guan L. Velocity and pressure-based partitions of horizontal and vertical trajectories for on-line signature verification. Pattern Recognition, 2010, 43(8): 2817-2832 doi: 10.1016/j.patcog.2010.02.011
    [30] Cpalka K, Zalasiński M, Rutkowski L. New method for the on-line signature verification based on horizontal partitioning. Pattern Recognition, 2014, 47(8): 2652-2661 doi: 10.1016/j.patcog.2014.02.012
    [31] Kholmatov A, Yanikoglu B. Identity authentication using improved online signature verification method. Pattern Recognition Letters, 2005, 26(15): 2400-2408 doi: 10.1016/j.patrec.2005.04.017
    [32] Kar B, Dutta P K, Basu T K, VielHauer C, Dittmann J. DTW based verification scheme of biometric signatures. In: Proceedings of the 2006 IEEE International Conference on Industrial Technology. Mumbai, India: IEEE, 2006. 381- 386
    [33] Yeung D Y, George S, Kashi R, Matsumoto T, Rigoll G. SVC 2004: first international signature verification competition [Online], available: http://www.cse.ust.hk/svc2004, June 24, 2016
    [34] Kholmatov A, Yanikoglu B. SUSIG: an on-line signature database, associated protocols and benchmark results. Pattern Analysis and Applications, 2009, 12(3): 227-236 doi: 10.1007/s10044-008-0118-x
    [35] Sakoe H, Chiba S. Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1978, 26(1): 43-49 doi: 10.1109/TASSP.1978.1163055
    [36] Fischer A, Diaz M, Plamondon R, Ferrer M A. Robust score normalization for DTW-based on-line signature verification. In: Proceedings of the 13th International Conference on Document Analysis and Recognition (ICDAR). Tunis, Italy: IEEE, 2015. 241-245
    [37] Fang P, Wu Z C, Meng M, Ge Y J, Yu Y. A novel tablet for on-line handwriting signal capture. In: Proceedings of the 5th World Congress on Intelligent Control and Automation. Hangzhou, China: IEEE, 2004. 3714-3717
  • 加载中
图(16) / 表(8)
计量
  • 文章访问数:  3264
  • HTML全文浏览量:  379
  • PDF下载量:  810
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-06
  • 录用日期:  2016-06-22
  • 刊出日期:  2016-11-01

目录

    /

    返回文章
    返回