2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于流形特征相似度的感知图像质量评价

王朝云 蒋刚毅 郁梅 陈芬

王朝云, 蒋刚毅, 郁梅, 陈芬. 基于流形特征相似度的感知图像质量评价. 自动化学报, 2016, 42(7): 1113-1124. doi: 10.16383/j.aas.2016.c150559
引用本文: 王朝云, 蒋刚毅, 郁梅, 陈芬. 基于流形特征相似度的感知图像质量评价. 自动化学报, 2016, 42(7): 1113-1124. doi: 10.16383/j.aas.2016.c150559
WANG Chao-Yun, JIANG Gang-Yi, YU Mei, CHEN Fen. Manifold Feature Similarity Based Perceptual Image Quality Assessment. ACTA AUTOMATICA SINICA, 2016, 42(7): 1113-1124. doi: 10.16383/j.aas.2016.c150559
Citation: WANG Chao-Yun, JIANG Gang-Yi, YU Mei, CHEN Fen. Manifold Feature Similarity Based Perceptual Image Quality Assessment. ACTA AUTOMATICA SINICA, 2016, 42(7): 1113-1124. doi: 10.16383/j.aas.2016.c150559

基于流形特征相似度的感知图像质量评价

doi: 10.16383/j.aas.2016.c150559
基金项目: 

浙江省自然科学基金 LY15F010005

国家自然科学基金 U1301257

国家自然科学基金 61271270

浙江省自然科学基金 LY16F010002

国家自然科学基金 61311140262

国家高技术研究发展计划(863计划) 2015AA015901

详细信息
    作者简介:

    王朝云:WANG Chao-Yun Master student at Ningbo University. His research interest covers image and video quality assessment

    郁梅:WANG Chao-Yun Master student at Ningbo University. His research interest covers image and video quality assessment

    陈芬:CHEN Fen Associate professor at Ningbo University. Her research interest covers optical communication technology, and digital signal processing technology

    通讯作者:

    蒋刚毅宁波大学教授.主要研究方向为计算机图像处理, 图像与视频信号编码与传输.本文通信作者.E-mail:jianggangyi@126.com

Manifold Feature Similarity Based Perceptual Image Quality Assessment

More Information
    Corresponding author: JIANG Gang-Yi Professor at Ningbo University. His research interest covers computer image processing, image and video signal encoding and transmission. Corresponding author of this paper
  • 摘要: 图像质量评价(Image quality assessment, IQA)的目标是利用设计的计算模型得到与主观评价一致的结果,而人类视觉感知特性是感知图像质量评价的关键.大量研究发现,认知流形和拓扑连续性是人类感知的基础即人类感知局限在低维流形之上.基于图像低维流形特征分析,本文提出了基于流形特征相似度(Manifold feature similarity, MFS)的全参考图像质量评价方法.首先,利用正交局部保持投影算法来模拟大脑的视觉处理过程获取最佳映射矩阵进而得到图像的低维流形特征,通过流形特征的相似度来表征两幅图像的结构差异,从而反映感知质量上的差异.其次,考虑亮度失真对人眼视觉感知的影响,通过图像块均值计算亮度相似度并用于评价图像的亮度失真;最后,结合两个相似度得到图像的客观质量评价值.在四个公开图像测试库上的实验结果表明,所提出方法与现有代表性的图像质量方法相比总体上具有更好的评价结果.
  • 图  1  基于流形特征相似度的图像质量评价准则

    Fig.  1  Manifold feature similarity based perceptual image quality index

    图  2  用于OLPP训练的图像集S1, 其中的图像均来自IVC的无失真图像

    Fig.  2  The set S1 for OLPP, the images in the set were picked from IVC dataset

    图  3  用于OLPP训练的图像集S2, 其中的图像均来自TOY的无失真图像

    Fig.  3  The set S2 for OLPP, the images in the set were picked from TOY dataset

    图  4  样本图像块数目与SROCC关系

    Fig.  4  The relationship between sample numbers and SROCC

    表  1  应用于图像质量评价算法分析的4个测试图像库

    Table  1  The four benchmark datasets for evaluating IQA indices

    图像库 参考图像数 失真图像数 失真类型数 主观测试人数
    TID2013 25 3000 25 971
    TID2008 25 1700 17 838
    CSIQ 30 866 6 35
    LIVE 29 799 5 161
    下载: 导出CSV

    表  2  3种选块策略对应的SROCC值

    Table  2  The SROCC of three selection strategies

    图像库 不选块 AVE选块 AVE+VS选块
    TID2013 0.8655 0.8728 0.8741
    TID2008 0.8763 0.8870 0.8893
    CSIQ 0.9508 0.9621 0.9615
    LIVE 0.9500 0.9600 0.9578
    下载: 导出CSV

    表  3  不同的PCA白化降维维数下, MFS在4个图像库上SROCC值

    Table  3  The SROCC of MFS at different whitening dimensions on four datasets

    PCA白化后的空间维数 LIVE CSIQ TID2008 TID2013
    8 0.9578 0.9615 0.8893 0.8741
    16 0.9509 0.9594 0.8820 0.8585
    24 0.9507 0.9587 0.8754 0.8483
    32 0.9332 0.9235 0.8205 0.8059
    64 0.9283 0.9067 0.7311 0.7444
    不降维 0.8163 0.6962 0.2863 0.3864
    下载: 导出CSV

    表  4  在两个训练集图像库上的SROCC值比较

    Table  4  The SROCC of MFS on two training sets

    训练集 LIVE CSIQ TID 2008 TID 2013 Average
    S1 0.9594 0.9615 0.8866 0.8579 0.9168
    S2 0.9578 0.9615 0.8893 0.8741 0.9206
    下载: 导出CSV

    表  5  ω取不同值时, MFS在4个图像库上的SROCC值

    Table  5  The SROCC of MFS when ω takes different values

    ω 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
    LIVE 0.9553 0.9554 0.9557 0.9560 0.9562 0.9565 0.9568 0.9573 0.9578 0.9575 0.9248
    CSIQ 0.9516 0.9523 0.9532 0.9542 0.9553 0.9565 0.9579 0.9594 0.9615 0.9635 0.7700
    TID 2008 0.8377 0.8439 0.8509 0.8584 0.8661 0.8739 0.8817 0.8879 0.8893 0.8769 0.6598
    TID 2013 0.8407 0.8455 0.8505 0.8554 0.8602 0.8650 0.8696 0.8733 0.8741 0.8675 0.7081
    下载: 导出CSV

    表  6  仅考虑流形特征时MFS的评价性能(ω=0)

    Table  6  The performance when just considering the manifold feature (ω=0)

    SSIM MS-SSIM IFC VIF VSNR MAD GSM RFSM FSIMc VSI MFS
    TID 2013 SROCC 0.7471 0.7859 0.5389 0.6769 0.6812 0.7808 0.7946 0.7744 0.8510 0.8965 0.8407
    TID 2008 SROCC 0.7749 0.8542 0.5675 0.7491 0.7046 0.8340 0.8504 0.8680 0.8840 0.8979 0.8377
    CSIQ SROCC 0.8756 0.9133 0.7671 0.9195 0.8106 0.9466 0.9108 0.9295 0.9310 0.9423 0.9516
    LIVE SROCC 0.9479 0.9513 0.9259 0.9636 0.9274 0.9669 0.9561 0.9401 0.9645 0.9524 0.9553
    Ave SROCC 0.8363 0.8761 0.6998 0.8272 0.7809 0.8820 0.8779 0.8780 0.9076 0.9222 0.8963
    下载: 导出CSV

    表  7  11种方法在4个图像库上的整体性能比较(ω=0.8)

    Table  7  The total performance comparison of 11 IQA indices (ω=0.8)

    SSIM MS-SSIM IFC VIF VSNR MAD GSM RFSM FSIMc VSI MFS
    TID2013 SROCC 0.7471 0.7859 0.5389 0.6769 0.6812 0.7808 0.7946 0.7744 0.8510 0.8965 0.8741
    KROCC 0.5588 0.6407 0.3939 0.5147 0.5084 0.6035 0.6255 0.5951 0.6665 0.7183 0.6862
    PLCC 0.7895 0.8329 0.5538 0.7720 0.7402 0.8267 0.8464 0.8333 0.8769 0.9000 0.8856
    RMSE 0.7608 0.6861 1.0322 0.7880 0.8392 0.6975 0.6603 0.6852 0.5959 0.5404 0.5757
    TID2008 SROCC 0.7749 0.8542 0.5675 0.7491 0.7046 0.8340 0.8504 0.8680 0.8840 0.8979 0.8893
    KROCC 0.5768 0.6568 0.4236 0.5860 0.5340 0.6445 0.6596 0.6780 0.6991 0.7123 0.7055
    PLCC 0.7732 0.8451 0.7340 0.8084 0.6820 0.8308 0.8422 0.8645 0.8762 0.8762 0.8865
    RMSE 0.8511 0.7173 0.9113 0.7899 0.9815 0.7468 0.7235 0.6746 0.6468 0.6466 0.6211
    CSIQ SROCC 0.8756 0.9133 0.7671 0.9195 0.8106 0.9466 0.9108 0.9295 0.9310 0.9423 0.9615
    KROCC 0.6907 0.7393 0.5897 0.7537 0.6247 0.7970 0.7374 0.7645 0.7690 0.7857 0.8260
    PLCC 0.8613 0.8991 0.8384 0.9277 0.8002 0.9502 0.8964 0.9179 0.9192 0.9279 0.9614
    RMSE 0.1344 0.1149 0.1431 0.0980 0.1575 0.0818 0.1164 0.1042 0.1034 0.0979 0.0722
    LIVE SROCC 0.9479 0.9513 0.9259 0.9636 0.9274 0.9669 0.9561 0.9401 0.9645 0.9524 0.9578
    KROCC 0.7963 0.8045 0.7579 0.8282 0.7616 0.8421 0.8150 0.7816 0.8363 0.8058 0.8199
    PLCC 0.9449 0.9489 0.9268 0.9604 0.9231 0.9675 0.9512 0.9354 0.9613 0.9482 0.9543
    RMSE 8.9455 8.6188 10.264 7.6137 10.506 6.9073 8.4327 9.6642 7.5296 8.6816 8.1691
    下载: 导出CSV

    表  8  11种方法在特定失真上的SROCC评价值

    Table  8  SROCC values of 11 IQA indices for each type of distortions

    Type SSIM MS-SSIM IFC VIF VSNR MAD GSM RFSM FSIMc VSI MFS
    TID2013 AGN 0.8671 0.8646 0.6612 0.8994 0.8271 0.8843 0.9064 0.8878 0.9101 0.9460 0.9153
    ANC 0.7726 0.7730 0.5352 0.8299 0.7305 0.8019 0.8175 0.8476 0.8537 0.8705 0.8273
    SCN 0.8515 0.8544 0.6601 0.8835 0.8013 0.8911 0.9158 0.8825 0.8900 0.9367 0.9001
    MN 0.7767 0.8073 0.6932 0.8450 0.7072 0.7380 0.7293 0.8368 0.8094 0.7697 0.8186
    HFN 0.8634 0.8604 0.7406 0.8972 0.8455 0.8876 0.8869 0.9145 0.9040 0.9200 0.9063
    IN 0.7503 0.7629 0.6408 0.8537 0.7363 0.2769 0.7965 0.9062 0.8251 0.8741 0.8313
    QN 0.8657 0.8706 0.6282 0.7854 0.8357 0.8514 0.8841 0.8968 0.8807 0.8748 0.8421
    GB 0.9668 0.9673 0.8907 0.9650 0.9470 0.9319 0.9689 0.9698 0.9551 0.9612 0.9553
    DEN 0.9254 0.9268 0.7779 0.8911 0.9081 0.9252 0.9432 0.9359 0.9330 0.9484 0.9178
    JPEG 0.9200 0.9265 0.8357 0.9192 0.9008 0.9217 0.9284 0.9398 0.9339 0.9541 0.9377
    JP2K 0.9468 0.9504 0.9078 0.9516 0.9273 0.9511 0.9602 0.9518 0.9589 0.9706 0.9633
    JGTE 0.8493 0.8475 0.7425 0.8409 0.7908 0.8283 0.8512 0.8312 0.8610 0.9216 0.8885
    J2TE 0.8828 0.8889 0.7769 0.8761 0.8407 0.8788 0.9182 0.9061 0.8919 0.9228 0.9081
    NEPN 0.7821 0.7968 0.5737 0.7720 0.6653 0.8315 0.8130 0.7705 0.7937 0.8060 0.7727
    Block 0.5720 0.4801 0.2414 0.5306 0.1771 0.2812 0.6418 0.0339 0.5532 0.1713 0.1755
    MS 0.7752 0.7906 0.5522 0.6276 0.4871 0.6450 0.7875 0.5547 0.7487 0.7700 0.6285
    CTC 0.3775 0.4634 0.1798 0.8386 0.3320 0.1972 0.4857 0.3989 0.4679 0.4754 0.4598
    CCS 0.4141 0.4099 0.4029 0.3099 0.3677 0.0575 0.3578 0.0204 0.8359 0.8100 0.8102
    MGN 0.7803 0.7786 0.6143 0.8468 0.7644 0.8409 0.8348 0.8464 0.8569 0.9117 0.8630
    CN 0.8566 0.8528 0.8160 0.8946 0.8683 0.9064 0.9124 0.8917 0.9135 0.9243 0.9052
    LCNI 0.9057 0.9068 0.8180 0.9204 0.8821 0.9443 0.9563 0.9010 0.9485 0.9564 0.9290
    ICQD 0.8542 0.8555 0.6006 0.8414 0.8667 0.8745 0.8973 0.8959 0.8815 0.8839 0.9072
    CHA 0.8775 0.8784 0.8210 0.8848 0.8645 0.8310 0.8823 0.8990 0.8925 0.8906 0.8798
    SSR 0.9461 0.9483 0.8885 0.9353 0.9339 0.9567 0.9668 0.9326 0.9576 0.9628 0.9478
    TID2008 AGN 0.8107 0.8086 0.5806 0.8797 0.7728 0.8386 0.8606 0.8415 0.8758 0.9229 0.8887
    ANC 0.8029 0.8054 0.5460 0.8757 0.7793 0.8255 0.8091 0.8613 0.8931 0.9118 0.8789
    SCN 0.8144 0.8209 0.5958 0.8698 0.7665 0.8678 0.8941 0.8468 0.8711 0.9296 0.8951
    MN 0.7795 0.8107 0.6732 0.8683 0.7295 0.7336 0.7452 0.8534 0.8264 0.7734 0.8375
    HFN 0.8729 0.8694 0.7318 0.9075 0.8811 0.8864 0.8945 0.9182 0.9156 0.9253 0.9225
    IN 0.6732 0.6907 0.5345 0.8327 0.6471 0.0650 0.7235 0.8806 0.7719 0.8298 0.7919
    QN 0.8531 0.8589 0.5857 0.7970 0.8270 0.8160 0.8800 0.8880 0.8726 0.8731 0.8500
    GB 0.9544 0.9563 0.8559 0.9540 0.9330 0.9196 0.9600 0.9409 0.9472 0.9529 0.9501
    DEN 0.9530 0.9582 0.7973 0.9161 0.9286 0.9433 0.9725 0.9400 0.9618 0.9693 0.9488
    JPEG 0.9252 0.9322 0.8180 0.9168 0.9174 0.9275 0.9393 0.9385 0.9294 0.9616 0.9416
    JP2K 0.9625 0.9700 0.9437 0.9709 0.9515 0.9707 0.9758 0.9488 0.9780 0.9848 0.9825
    JGTE 0.8678 0.8681 0.7909 0.8585 0.8055 0.8661 0.8790 0.8503 0.8756 0.9160 0.8766
    J2TE 0.8577 0.8606 0.7301 0.8501 0.7909 0.8394 0.8936 0.8592 0.8555 0.8942 0.8947
    NEPN 0.7107 0.7377 0.8418 0.7619 0.5716 0.8287 0.7386 0.7274 0.7514 0.7699 0.7094
    Block 0.8462 0.7546 0.6770 0.8324 0.1926 0.7970 0.8862 0.6258 0.8464 0.6295 0.4698
    MS 0.7231 0.7336 0.4250 0.5096 0.3715 0.5163 0.7190 0.4178 0.6554 0.6714 0.4810
    CTC 0.5246 0.6381 0.1713 0.8188 0.4239 0.2723 0.6691 0.5823 0.6510 0.6557 0.6348
    CSIQ AGWN 0.8974 0.9471 0.8431 0.9575 0.9241 0.9541 0.9440 0.9441 0.9359 0.9636 0.9647
    JPEG 0.9546 0.9634 0.9412 0.9705 0.9036 0.9615 0.9632 0.9502 0.9664 0.9618 0.9548
    JP2K 0.9606 0.9683 0.9252 0.9672 0.9480 0.9752 0.9648 0.9643 0.9704 0.9694 0.9750
    AGPN 0.8922 0.9331 0.8261 0.9511 0.9084 0.9570 0.9387 0.9357 0.9370 0.9638 0.9607
    GB 0.9609 0.9711 0.9527 0.9745 0.9446 0.9602 0.9589 0.9634 0.9729 0.9679 0.9758
    GCD 0.7922 0.9526 0.4873 0.9345 0.8700 0.9207 0.9354 0.9527 0.9438 0.9504 0.9485
    LIVE JP2K 0.9614 0.9627 0.9113 0.9696 0.9551 0.9676 0.9700 0.9323 0.9724 0.9604 0.9645
    JPEG 0.9764 0.9815 0.9468 0.9846 0.9657 0.9764 0.9778 0.9584 0.9840 0.9761 0.9759
    AGWN 0.9694 0.9733 0.9382 0.9858 0.9785 0.9844 0.9774 0.9799 0.9716 0.9835 0.9868
    GB 0.9517 0.9542 0.9584 0.9728 0.9413 0.9465 0.9518 0.9066 0.9708 0.9527 0.9622
    FF 0.9556 0.9471 0.9629 0.9650 0.9027 0.9569 0.9402 0.9237 0.9519 0.9430 0.9418
    下载: 导出CSV

    表  9  11种质量评价方法的时间复杂度

    Table  9  Time cost of 11 IQA indices

    IQA index Time cost(ms)
    SSIM 17.3
    MS-SSIM 71.2
    IFC 538.0
    VIF 546.4
    VSNR 23.9
    MAD 702.3
    GSM 17.7
    RFSM 49.8
    FSIMc 142.5
    VSI 105.2
    MFS 140.7
    下载: 导出CSV
  • [1] Ma L, Deng C W, Ngan K N, Lin W S. Recent advances and challenges of visual signal quality assessment. China Communications, 2013, 10(5):62-278 doi: 10.1109/CC.2013.6520939
    [2] Saha A, Wu Q M J. Utilizing image scales towards totally training free blind image quality assessment. IEEE Transactions on Image Processing, 2015, 24(6):1879-1892 doi: 10.1109/TIP.2015.2411436
    [3] 王志明.无参考图像质量评价综述.自动化学报, 2015, 41(6):1062-1079 http://www.aas.net.cn/CN/abstract/abstract18682.shtml

    Wang Zhi-Ming. Review of no-reference image quality assessment. Acta Automatica Sinica, 2015, 41(6):1062-1079 http://www.aas.net.cn/CN/abstract/abstract18682.shtml
    [4] Wang Z, Bovik A C, Sheikh H R, Simoncelli E P. Image quality assessment:from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4):600-612 doi: 10.1109/TIP.2003.819861
    [5] Wang Z, Simoncelli E P, Bovik A C. Multiscale structural similarity for image quality assessment. In:Proceedings of the 37th Conference Record of Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA, USA:IEEE, 2003. 1398-1402
    [6] Zhang L, Zhang D, Mou X Q. RFSIM:a feature based image quality assessment metric using Riesz transforms. In:Proceedings of the 17th International Conference on Image Process. Hong Kong, China:IEEE, 2010. 321-324
    [7] Zhang L, Zhang D, Mou X Q, Zhang D. FSIM:a feature similarity index for image quality assessment. IEEE Transactions on Image Processing, 2011, 20(8):2378-2386 doi: 10.1109/TIP.2011.2109730
    [8] 程光权, 张继东, 成礼智, 黄金才, 刘忠.基于几何结构失真模型的图像质量评价研究.自动化学报, 2011, 37(7):811-819 http://www.aas.net.cn/CN/abstract/abstract17447.shtml

    Cheng Guang-Quan, Zhang Ji-Dong, Cheng Li-Zhi, Huang Jin-Cai, Liu Zhong. Image quality assessment based on geometric structural distortion model. Acta Automatica Sinica, 2011, 37(7):811-819 http://www.aas.net.cn/CN/abstract/abstract17447.shtml
    [9] Chandler D M, Hemami S S. VSNR:a wavelet-based visual signal-to-noise ratio for natural images. IEEE Transactions on Image Processing, 2007, 16(9):2284-2298 doi: 10.1109/TIP.2007.901820
    [10] Larson E C, Chandler D M. Most apparent distortion:full-reference image quality assessment and the role of strategy. Journal of Electronic Imaging, 2010, 19(1):011006 doi: 10.1117/1.3267105
    [11] Sheikh H R, Bovik A C. Image information and visual quality. IEEE Transactions on Image Processing, 2006, 15(2):430-444 doi: 10.1109/TIP.2005.859378
    [12] Sheikh H R, Bovik A C, De Veciana G. An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Transactions on Image Processing, 2005, 14(12):2117-2128 doi: 10.1109/TIP.2005.859389
    [13] Zhang L, Shen Y, Li H Y. VSI:a visual saliency-induced index for perceptual image quality assessment. IEEE Transactions on Image Processing, 2014, 23(10):4270-4281 doi: 10.1109/TIP.2014.2346028
    [14] Liu A M, Lin W S, Narwaria M. Image quality assessment based on gradient similarity. IEEE Transactions on Image Processing, 2012, 21(4):1500-1512 doi: 10.1109/TIP.2011.2175935
    [15] Seung H S, Lee D D. The manifold ways of perception. Science, 2000, 290(5500):2268-2269 doi: 10.1126/science.290.5500.2268
    [16] de Silva V, Tenenbaum J B. Global versus local methods in nonlinear dimensionality reduction. In:Proceedings of the 2002 Advances in Neural Information Processing Systems. Cambridge, MA:MIT Press, 2002. 705-712
    [17] Cai D, He X F, Han J W, Zhang H J. Orthogonal Laplacianfaces for face recognition. IEEE Transactions on Image Processing, 2006, 15(11):3608-3614 doi: 10.1109/TIP.2006.881945
    [18] Charrier C, Lebrun G, Lezoray O. Image quality assessment with manifold and machine learning. In:Proceedings of the 2009 SPIE 7242, Image Quality and System Performance VI. San Jose, CA:SPIE, 2009. http://cn.bing.com/academic/profile?id=2042873693&encoded=0&v=paper_preview&mkt=zh-cn
    [19] Taube J S. Head direction cells and the neurophysiological basis for a sense of direction. Progress in Neurobiology, 1998, 55(3):225-256 doi: 10.1016/S0301-0082(98)00004-5
    [20] Simoncelli E P, Olshausen B A. Natural image statistics and neural representation. Annual Review of Neuroscience, 2001, 24:1193-1216 doi: 10.1146/annurev.neuro.24.1.1193
    [21] Engelke U, Kaprykowsky H, Zepernick H, Ndjiki-Nya P. Visual attention in quality assessment. IEEE Signal Processing Magazine, 2011, 28(6):50-59 doi: 10.1109/MSP.2011.942473
    [22] Moorthy A K, Bovik A C. Visual importance pooling for image quality assessment. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(2):193-201 doi: 10.1109/JSTSP.2009.2015374
    [23] Zhang L, Gu Z Y, Li H Y. SDSP:a novel saliency detection method by combining simple priors. In:Proceedings of the 20th IEEE International Conference on Image Processing. Melbourne, VIC:IEEE, 2013. 171-175
    [24] Sheikh H R, Sabir M F, Bovik A C. A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Transactions on Image Processing, 2006, 15(11):3440-3451 doi: 10.1109/TIP.2006.881959
    [25] Ponomarenko N N, Lukin V V, Zelensky A, Egiazarian K, Carli M, Battisti F. TID2008——a database for evaluation of full-reference visual quality assessment metrics. Advances of Modern Radioelectronics, 2009, 10:30-45 http://cn.bing.com/academic/profile?id=2324971623&encoded=0&v=paper_preview&mkt=zh-cn
    [26] Ponomarenko N, Jin L, Ieremeiev O, Lukin V, Egiazarian K, Astola J, Vozel B, Chehdi K, Carli M, Battisti F, Kuo C C J. Image database TID2013:peculiarities, results and perspectives. Signal Processing:Image Communication, 2015, 30:57-77 doi: 10.1016/j.image.2014.10.009
    [27] VQEG. Final report from the video quality experts group on the validation of objective models of video quality assessment[Online], available:http://www.vqeg.org/, November 3, 2015
  • 加载中
图(4) / 表(9)
计量
  • 文章访问数:  3098
  • HTML全文浏览量:  399
  • PDF下载量:  1092
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-06
  • 录用日期:  2015-12-07
  • 刊出日期:  2016-07-01

目录

    /

    返回文章
    返回