[1]
|
Shorten R N, Narendra K S, Mason O. A result on common quadratic Lyapunov functions. IEEE Transactions on Automatic Control, 2003, 48(1): 110-113 doi: 10.1109/TAC.2002.806661
|
[2]
|
Cheng D Z. Stabilization of planar switched systems. Systems and Control Letters, 2004, 51(2): 79-88 doi: 10.1016/S0167-6911(03)00208-1
|
[3]
|
付主木, 费树岷.一类不确定切换奇异系统的动态输出反馈鲁棒H∞控制.自动化学报, 2008, 34(4): 482-487 http://www.aas.net.cn/CN/abstract/abstract15860.shtmlFu Zhu-Mu, Fei Shu-Min. Robust H∞ dynamic output feedback stabilization for a class of uncertain switched singular systems. Acta Automatica Sinica, 2008, 34(4): 482-487 http://www.aas.net.cn/CN/abstract/abstract15860.shtml
|
[4]
|
宋秀兰, 俞立.任意切换线性系统的鲁棒镇定及其DC-DC变换器切换控制.系统科学与数学, 2014, 34(12): 1475-1485Song Xiu-Lan, Yu Li. Robust stabilization of arbitrary switched linear systems and its application to switching control of DC-DC converter. Journal of Systems Science and Mathematical Sciences, 2014, 34(12): 1475-1485
|
[5]
|
Agrachev A A, Liberzon D. Lie-algebraic stability criteria for switched systems. SIAM Journal on Control and Optimization, 2001, 40(1): 253-269 doi: 10.1137/S0363012999365704
|
[6]
|
Dayawansa W P, Martin C F. A converse Lyapunov theorem for a class of dynamical systems which undergo switching. IEEE Transactions on Automatic Control, 1999, 44(4): 751-760 doi: 10.1109/9.754812
|
[7]
|
Branicky M S. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Transactions on Automatic Control, 1998, 43(4): 475-482 doi: 10.1109/9.664150
|
[8]
|
Geromel J C, Colaneri P. Stability and stabilization of continuous-time switched linear systems. SIAM Journal on Control and Optimization, 2006, 45(5): 1915-1930 doi: 10.1137/050646366
|
[9]
|
Zhao J, Hill D J. On stability, L2-gain and H∞ control for switched systems. Automatica, 2008, 44(5): 1220-1232 doi: 10.1016/j.automatica.2007.10.011
|
[10]
|
Long L J, Zhao J. H∞ control of switched nonlinear systems in p-normal form using multiple Lyapunov functions. IEEE Transactions on Automatic Control, 2012, 57(5): 1285-1291 doi: 10.1109/TAC.2012.2191835
|
[11]
|
Hespanha J P. Uniform stability of switched linear systems: extensions of LaSalle's invariance principle. IEEE Transactions on Automatic Control, 2004, 49(4): 470-482 doi: 10.1109/TAC.2004.825641
|
[12]
|
Cheng D Z, Guo L, Lin Y D, Wang Y. Stabilization of switched linear systems. IEEE Transactions on Automatic Control, 2005, 50(5): 661-666 doi: 10.1109/TAC.2005.846594
|
[13]
|
林相泽, 邹云.线性切换系统的积分不变性原理.自动化学报, 2011, 37(2): 196-204 doi: 10.3724/SP.J.1004.2011.00196Lin Xiang-Ze, Zou Yun. An integral invariance principle for switched linear systems. Acta Automatica Sinica, 2011, 37(2): 196-204 doi: 10.3724/SP.J.1004.2011.00196
|
[14]
|
Zhao X D, Yin S, Li H Y, Niu B. Switching stabilization for a class of slowly switched systems. IEEE Transactions on Automatic Control, 2015, 60(1): 221-226 doi: 10.1109/TAC.2014.2322961
|
[15]
|
Kalman R E. Contributions to the theory of optimal control. Boletin de la Sociedad Matematica Mexicana, 1960, 5(2): 102-119
|
[16]
|
Ikeda M, Maeda H, Kodama S. Estimation and feedback in linear time-varying systems: a deterministic theory. SIAM Journal on Control, 1975, 13(2): 304-326 doi: 10.1137/0313018
|
[17]
|
黄琳.稳定性理论.北京:北京大学出版社, 1992.Huang Lin. Stability Theory. Beijing: Beijing University Press, 1992.
|