2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时变线性切换系统的指数镇定

王兴平

王兴平. 时变线性切换系统的指数镇定. 自动化学报, 2016, 42(9): 1440-1444. doi: 10.16383/j.aas.2016.c150540
引用本文: 王兴平. 时变线性切换系统的指数镇定. 自动化学报, 2016, 42(9): 1440-1444. doi: 10.16383/j.aas.2016.c150540
WANG Xing-Ping. Exponential Stabilization of Switched Time-varying Linear Systems. ACTA AUTOMATICA SINICA, 2016, 42(9): 1440-1444. doi: 10.16383/j.aas.2016.c150540
Citation: WANG Xing-Ping. Exponential Stabilization of Switched Time-varying Linear Systems. ACTA AUTOMATICA SINICA, 2016, 42(9): 1440-1444. doi: 10.16383/j.aas.2016.c150540

时变线性切换系统的指数镇定

doi: 10.16383/j.aas.2016.c150540
详细信息
    作者简介:

    王兴平 海军航空工程学院系统科学与数学研究所副教授.主要研究方向为非线性系统和多智能体系统.E-mail:wangxpyan@hotmail.com

Exponential Stabilization of Switched Time-varying Linear Systems

More Information
    Author Bio:

    Associate professor at the Institute of Systems Science and Mathematics, Naval Aeronautical and Astronautical University. His research interest covers nonlinear systems and multi-agent systems. E-mail:

  • 摘要: 研究满足驻留时间条件的时变线性切换系统的指数镇定问题.在一致完全可控条件下,引入带权可控性格拉姆矩阵设计出参数化的反馈控制器,利用比较原理给出状态转移矩阵的超调估计.针对驻留时间已知和未知两种情况,通过选择设计参数消除切换产生的超调影响,建立了两个指数镇定结论.最后以仿真实例验证本文结论.
  • 图  1  第一次仿真运行结果

    Fig.  1  Simulation results in the first run

    图  2  第二次仿真运行结果

    Fig.  2  Simulation results in the second run

  • [1] Shorten R N, Narendra K S, Mason O. A result on common quadratic Lyapunov functions. IEEE Transactions on Automatic Control, 2003, 48(1): 110-113 doi: 10.1109/TAC.2002.806661
    [2] Cheng D Z. Stabilization of planar switched systems. Systems and Control Letters, 2004, 51(2): 79-88 doi: 10.1016/S0167-6911(03)00208-1
    [3] 付主木, 费树岷.一类不确定切换奇异系统的动态输出反馈鲁棒H控制.自动化学报, 2008, 34(4): 482-487 http://www.aas.net.cn/CN/abstract/abstract15860.shtml

    Fu Zhu-Mu, Fei Shu-Min. Robust H dynamic output feedback stabilization for a class of uncertain switched singular systems. Acta Automatica Sinica, 2008, 34(4): 482-487 http://www.aas.net.cn/CN/abstract/abstract15860.shtml
    [4] 宋秀兰, 俞立.任意切换线性系统的鲁棒镇定及其DC-DC变换器切换控制.系统科学与数学, 2014, 34(12): 1475-1485

    Song Xiu-Lan, Yu Li. Robust stabilization of arbitrary switched linear systems and its application to switching control of DC-DC converter. Journal of Systems Science and Mathematical Sciences, 2014, 34(12): 1475-1485
    [5] Agrachev A A, Liberzon D. Lie-algebraic stability criteria for switched systems. SIAM Journal on Control and Optimization, 2001, 40(1): 253-269 doi: 10.1137/S0363012999365704
    [6] Dayawansa W P, Martin C F. A converse Lyapunov theorem for a class of dynamical systems which undergo switching. IEEE Transactions on Automatic Control, 1999, 44(4): 751-760 doi: 10.1109/9.754812
    [7] Branicky M S. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Transactions on Automatic Control, 1998, 43(4): 475-482 doi: 10.1109/9.664150
    [8] Geromel J C, Colaneri P. Stability and stabilization of continuous-time switched linear systems. SIAM Journal on Control and Optimization, 2006, 45(5): 1915-1930 doi: 10.1137/050646366
    [9] Zhao J, Hill D J. On stability, L2-gain and H control for switched systems. Automatica, 2008, 44(5): 1220-1232 doi: 10.1016/j.automatica.2007.10.011
    [10] Long L J, Zhao J. H control of switched nonlinear systems in p-normal form using multiple Lyapunov functions. IEEE Transactions on Automatic Control, 2012, 57(5): 1285-1291 doi: 10.1109/TAC.2012.2191835
    [11] Hespanha J P. Uniform stability of switched linear systems: extensions of LaSalle's invariance principle. IEEE Transactions on Automatic Control, 2004, 49(4): 470-482 doi: 10.1109/TAC.2004.825641
    [12] Cheng D Z, Guo L, Lin Y D, Wang Y. Stabilization of switched linear systems. IEEE Transactions on Automatic Control, 2005, 50(5): 661-666 doi: 10.1109/TAC.2005.846594
    [13] 林相泽, 邹云.线性切换系统的积分不变性原理.自动化学报, 2011, 37(2): 196-204 doi: 10.3724/SP.J.1004.2011.00196

    Lin Xiang-Ze, Zou Yun. An integral invariance principle for switched linear systems. Acta Automatica Sinica, 2011, 37(2): 196-204 doi: 10.3724/SP.J.1004.2011.00196
    [14] Zhao X D, Yin S, Li H Y, Niu B. Switching stabilization for a class of slowly switched systems. IEEE Transactions on Automatic Control, 2015, 60(1): 221-226 doi: 10.1109/TAC.2014.2322961
    [15] Kalman R E. Contributions to the theory of optimal control. Boletin de la Sociedad Matematica Mexicana, 1960, 5(2): 102-119
    [16] Ikeda M, Maeda H, Kodama S. Estimation and feedback in linear time-varying systems: a deterministic theory. SIAM Journal on Control, 1975, 13(2): 304-326 doi: 10.1137/0313018
    [17] 黄琳.稳定性理论.北京:北京大学出版社, 1992.

    Huang Lin. Stability Theory. Beijing: Beijing University Press, 1992.
  • 加载中
图(2)
计量
  • 文章访问数:  2210
  • HTML全文浏览量:  265
  • PDF下载量:  887
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-31
  • 录用日期:  2016-02-15
  • 刊出日期:  2016-09-01

目录

    /

    返回文章
    返回