2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

如何解决基不匹配问题:从原子范数到无网格压缩感知

陈栩杉 张雄伟 杨吉斌 孙蒙

陈栩杉, 张雄伟, 杨吉斌, 孙蒙. 如何解决基不匹配问题:从原子范数到无网格压缩感知. 自动化学报, 2016, 42(3): 335-346. doi: 10.16383/j.aas.2016.c150539
引用本文: 陈栩杉, 张雄伟, 杨吉斌, 孙蒙. 如何解决基不匹配问题:从原子范数到无网格压缩感知. 自动化学报, 2016, 42(3): 335-346. doi: 10.16383/j.aas.2016.c150539
CHEN Xu-Shan, ZHANG Xiong-Wei, YANG Ji-Bin, SUN Meng. How to Overcome Basis Mismatch: From Atomic Norm to Gridless Compressive Sensing. ACTA AUTOMATICA SINICA, 2016, 42(3): 335-346. doi: 10.16383/j.aas.2016.c150539
Citation: CHEN Xu-Shan, ZHANG Xiong-Wei, YANG Ji-Bin, SUN Meng. How to Overcome Basis Mismatch: From Atomic Norm to Gridless Compressive Sensing. ACTA AUTOMATICA SINICA, 2016, 42(3): 335-346. doi: 10.16383/j.aas.2016.c150539

如何解决基不匹配问题:从原子范数到无网格压缩感知

doi: 10.16383/j.aas.2016.c150539
基金项目: 

江苏省自然科学基金 BK20140074

国家自然科学基金 61471394

国家自然科学基金 61471394

江苏省自然科学基金 BK20140071

详细信息
    作者简介:

    陈栩杉 解放军理工大学指挥信息系统学院博士研究生.2012年获得解放军理工大学硕士学位.主要研究方向为压缩感知, 压缩域信号处理, 宽带模拟信息转换器.E-mail:chenxushan87@163.com

    张雄伟 解放军理工大学指挥信息系统学院教授.1992年获得南京通信工程学院博士学位.主要研究方向为智能信息处理, 语音与图像信号处理, 数字通信.E-mail:xwzhang9898@163.com

    孙蒙 解放军理工大学指挥信息系统学院讲师.2012年获得比利时鲁汶大学博士学位.主要研究方向为语音信号处理, 无监督/半监督机器学习, 模式识别.E-mail:summengccjs@163.com

    通讯作者:

    杨吉斌 解放军理工大学指挥信息系统学院副教授.2006年获得解放军理工大学博士学位.主要研究方向为多媒体信号处理, 压缩感知.本文通信作者.E-mail:yjbice@sina.com

How to Overcome Basis Mismatch: From Atomic Norm to Gridless Compressive Sensing

Funds: 

Natural Science Foundation of Jiangsu Province BK20140074

National Natural Science Foundation of China 61471394

National Natural Science Foundation of China 61471394

Natural Science Foundation of Jiangsu Province BK20140071

More Information
    Author Bio:

    Ph.D. candidate at the College of Command Information System, Chinese People's Liberation Army University of Science and Technology. He received his master degree from Chinese People's Liberation Army University of Science and Technology in 2012. His research interest covers compressed sensing, compressive signal processing and wideband analog-to-information converter.E-mail:

    Professor at the College of Command Information System, Chinese People's Liberation Army University of Science and Technology. He received his Ph.D. degree from Nanjing Institute of Communication Engineering in 1992. His research interest covers intelligence information processing, speech and image signal processing and telecommunication systems.E-mail:

    Lecturer at the College of Command Information System, Chinese People's Liberation Army University of Science and Technology. He received his Ph.D. degree from Katholieke University of Leuven in 2012. His research interest covers speech processing, unsupervised/semi-supervised machine learning and pattern recognition.E-mail:

    Corresponding author: YANG Ji-Bin Associate professor at the College of Command Information System, Chinese People's Liberation Army University of Science and Technology. He received his Ph.D. degree from Chinese People's Liberation Army University of Science and Technology in 2006. His research interest covers multimedia signal processing and compressed sensing. Corresponding author of this paper. E-mail:yjbice@sina.com
  • 摘要: 压缩感知理论能够以远低于经典Nyquist速率进行采样, 采用非自适应线性投影获得了保留信号有用信息的少量观测点, 并通过求解最优化问题精确重构原始信号.压缩感知理论大大缓解了信号采样、存储和传输的巨大压力, 在计算机科学、电子工程和信号处理等领域具有广阔的应用前景.信号的稀疏表示是对信号进行压缩采样和重构的前提, 即假设信号在某个变换基(傅里叶基、小波基等)下是稀疏的, 这些基可以看作是用于描述信号参数空间的有限离散字典.然而在如雷达、阵列信号处理、通信等领域的应用中, 信号的参数空间是连续的, 在假定的离散变换基下并不稀疏, 这种基不匹配问题会严重影响信号重构精度.本文首先介绍了基不匹配产生的原因及其对重构精度的影响, 接着从原子范数出发, 综述了无网格压缩感知的理论框架和关键技术问题, 着重介绍了一维和多维无网格压缩感知的最新研究进展, 最后对其在信号处理等领域的应用进行了探讨.
  • 图  1  原子范数示意图

    Fig.  1  The diagram of atomic norm

    图  2  一维对偶多项式与频率支撑集的关系

    Fig.  2  The relationship between dual polynomial and frequency support

    图  3  基于原子范数最小化的循环自相关重构算法性能(MSE overall表示循环自相关的整体重构误差, MSE peak表示循环频率处的峰值重构误差)

    Fig.  3  Performance of atomic norm based cyclic autocorrelation reconstruction (MSE overall represents the whole MSE and MSE peak represents the MSE at the peaks of cycle frequencies.)

  • [1] Baraniuk R G. Compressive sensing[lecture notes]. IEEE Signal Processing Magazine, 2007, 24(4):118-121 doi: 10.1109/MSP.2007.4286571
    [2] Candes E J, Wakin M B. An introduction to compressive sampling. IEEE Signal Processing Magazine, 2008, 25(2):21-30 doi: 10.1109/MSP.2007.914731
    [3] Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306 doi: 10.1109/TIT.2006.871582
    [4] Theodoridis S, Kopsinis Y, Slavakis K. Sparsity-aware learning and compressed sensing:an overview. Academic Press Library in Signal Processing. New York:Academic Press, 2012. 1271-1377
    [5] Davenport M A, Boufounos P T, Wakin M B, Baraniuk R G. Signal processing with compressive measurements. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2):445-460 doi: 10.1109/JSTSP.2009.2039178
    [6] Ramasamy D, Venkateswaran S, Madhow U. Compressive parameter estimation in AWGN. IEEE Transactions on Signal Processing, 2014, 62(8):2012-2027 doi: 10.1109/TSP.2014.2306180
    [7] Chen X S, Zhang X W, Yang J B, Sun M, Yang W W. Cramer-rao bounds for compressive frequency estimation. IEICE Transactions on Fundamentals of Electronics, Communications & Computer Sciences, 2015, 98(3):874-877
    [8] Huang H, Misra S, Tang W, Barani H, Al-Azzawi H. Applications of compressed sensing in communications networks[Online], available: http://arxiv.org/abs/1305.3002, May 14, 2013.
    [9] Willett R M, Marcia R F, Nichols J M. Compressed sensing for practical optical imaging systems:a tutorial. Optical Engineering, 2011, 50(7):072601 doi: 10.1117/1.3596602
    [10] Mishali M, Eldar Y C. Wideband spectrum sensing at sub-Nyquist rates[applications corner]. IEEE Signal Processing Magazine, 2011, 28(4):102-135 doi: 10.1109/MSP.2011.941094
    [11] Mishali M, Eldar Y C. From theory to practice:sub-Nyquist sampling of sparse wideband analog signals. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2):375-391 doi: 10.1109/JSTSP.2010.2042414
    [12] Elad M. Sparse and Redundant Representations:from Theory to Applications in Signal and Image Processing. New York:Springer, 2010. 1-10
    [13] Donoho D L, Elad M. Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization. Proceedings of the National Academy of Sciences, 2003, 100(5):2197-2202 doi: 10.1073/pnas.0437847100
    [14] Stojnic M, Xu W Y, Hassibi B. Compressed sensing of approximately sparse signals. In:Proceedings of the 2008 IEEE International Symposium on Information Theory. Toronto, Canada:IEEE, 2008. 2182-2186
    [15] Stoica P, Babu P. Sparse estimation of spectral lines:grid selection problems and their solutions. IEEE Transactions on Signal Processing, 2012, 60(2):962-967 doi: 10.1109/TSP.2011.2175222
    [16] Stoica P, Moses R L. Spectral Analysis of Signals. New Jersey:Prentice Hall, 2005. 1-12
    [17] Baraniuk R, Steeghs P. Compressive radar imaging. In:Proceedings of the 2007 IEEE Radar Conference. Boston, USA:IEEE, 2007. 128-133
    [18] Duarte M F, Baraniuk R G. Spectral compressive sensing. Applied & Computational Harmonic Analysis, 2013, 35(1):111-129
    [19] Bajwa W U, Haupt J, Sayeed A M, Nowak R. Compressed channel sensing:a new approach to estimating sparse multipath channels. Proceedings of the IEEE, 2010, 98(6):1058-1076 doi: 10.1109/JPROC.2010.2042415
    [20] Herman M A, Strohmer T. High-resolution radar via compressed sensing. IEEE Transactions on Signal Processing, 2009, 57(6):2275-2284 doi: 10.1109/TSP.2009.2014277
    [21] Malioutov D, Cetin M, Willsky A S. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 2005, 53(8):3010-3022 doi: 10.1109/TSP.2005.850882
    [22] Yang Z, Xie L H. On gridless sparse methods for line spectral estimation from complete and incomplete data. IEEE Transactions on Signal Processing, 2015, 63(12):3139-3153 doi: 10.1109/TSP.2015.2420541
    [23] Tang G G, Bhaskar B N, Shah P, Recht B. Compressed sensing off the grid. IEEE Transactions on Information Theory, 2013, 59(11):7465-7490 doi: 10.1109/TIT.2013.2277451
    [24] Chi Y J, Scharf L L, Pezeshki A, Calderbank A R. Sensitivity to basis mismatch in compressed sensing. IEEE Transactions on Signal Processing, 2011, 59(5):2182-2195 doi: 10.1109/TSP.2011.2112650
    [25] Herman M A, Strohmer T. General perturbations in compressed sensing. In:Proceedings of Workshop on Signal Processing with Adaptive Sparse Structured Representations. Saint-Malo, France:IEEE, 2009. 145-149
    [26] Herrman M A, Strohmer T. General perturbations of sparse signals in compressed sensing. In:Proceedings of the 2009 IEEE International Conference on Sampling Theory and Applications. Marseilles, France:IEEE, 2009. 273-276
    [27] Herman M A, Needell D. Mixed operators in compressed sensing. In:Proceedings of the 44th Annual Conference on Information Sciences and Systems. Princeton, NJ:IEEE, 2010. 1-6
    [28] Candés E J, Fernandez-Granda C. Towards a mathematical theory of super-resolution. Communications on Pure & Applied Mathematics, 2014, 67(6):906-956
    [29] Chandrasekaran V, Recht B, Parrilo P A, Willsky A S. The convex algebraic geometry of linear inverse problems. In:Proceedings of the 48th Annual Allerton Conference on Communication, Control, and Computing. Allerton, USA:IEEE, 2010. 699-703
    [30] Herman M A, Strohmer T. General deviants:an analysis of perturbations in compressed sensing. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2):342-349 doi: 10.1109/JSTSP.2009.2039170
    [31] Chandrasekaran V, Recht B, Parrilo P A, Willsky A S. The convex geometry of linear inverse problems. Foundations of Computational Mathematics, 2012, 12(6):805-849 doi: 10.1007/s10208-012-9135-7
    [32] Candés E J, Fernandez-Granda C. Super-resolution from noisy data. Journal of Fourier Analysis & Applications, 2013, 19(6):1229-1254
    [33] Azais J M, de Castro Y, Gamboa F. Spike detection from inaccurate samplings. Applied & Computational Harmonic Analysis, 2015, 38(2):177-195
    [34] Chen Y X, Chi Y J. Robust spectral compressed sensing via structured matrix completion. IEEE Transactions on Information Theory, 2014, 60(10):6576-6601 doi: 10.1109/TIT.2014.2343623
    [35] Eldar Y C, Rauhut H. Average case analysis of multichannel sparse recovery using convex relaxation. IEEE Transactions on Information Theory, 2010, 56(1):505-519 doi: 10.1109/TIT.2009.2034789
    [36] Liang Y J, Ying R D, Lu Z Q, Liu P L. Off-grid direction of arrival estimation based on joint spatial sparsity for distributed sparse linear arrays. Sensors, 2014, 14(11):21981-22000 doi: 10.3390/s141121981
    [37] Grant M, Boyd S P. CVX:MATLAB software for disciplined convex programming. Global Optimization, 2014. 155-210
    [38] Bhaskar B N, Tang G G, Recht B. Atomic norm denoising with applications to line spectral estimation. IEEE Transactions on Signal Processing, 2013, 61(23):5987-5999 doi: 10.1109/TSP.2013.2273443
    [39] Bhaskar B N, Recht B. Atomic norm denoising with applications to line spectral estimation. In:Proceedings of the 49th Annual Allerton Conference on Communication, Control, and Computing. Monticello, USA:IEEE, 2011. 261-268
    [40] Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations & Trends in Machine Learning, 2011, 3(1):1-122
    [41] Chi Y J, Chen Y X. Compressive recovery of 2-D off-grid frequencies. In:Proceedings of the 2013 Asilomar Conference on Signals, Systems and Computers. Pacific Grove, USA:IEEE, 2013. 687-691
    [42] Xu W Y, Cai J F, Mishra K V, Cho M, Kruger A. Precise semidefinite programming formulation of atomic norm minimization for recovering d-dimensional (d≥2) off-the-grid frequencies. In:Proceedings of the 2014 IEEE Workshop on Information Theory and Applications. San Diego, USA:IEEE, 2014. 1-4
    [43] Yang Z, Xie L H. Continuous compressed sensing with a single or multiple measurement vectors. In:Proceedings of the 2014 IEEE Workshop on Statistical Signal Processing. Gold Coast, USA:IEEE, 2014. 288-291
    [44] Krim H, Viberg M. Two decades of array signal processing research:the parametric approach. IEEE Signal Processing Magazine, 1996, 13(4):67-94 doi: 10.1109/79.526899
    [45] Yang Z, Xie L H, Zhang C S. A discretization-free sparse and parametric approach for linear array signal processing. IEEE Transactions on Signal Processing, 2014, 62(19):4959-4973 doi: 10.1109/TSP.2014.2339792
    [46] Ibrahim M, Romer F, Alieiev R, Del Galdo G, Thoma R S. On the estimation of grid offsets in CS-based direction-of-arrival estimation. In:Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing. Florence, Italy:IEEE, 2014. 6776-6780
    [47] Liu L, Wei P. Off-grid DOA estimation based on analysis of the convexity of maximum likelihood function[Online], available: http://arxiv.org/abs/1412.6720, December 21, 2014
    [48] Gretsistas A, Plumbley M D. An alternating descent algorithm for the off-grid DOA estimation problem with sparsity constraints. In:Proceedings of the 20th European Signal Processing Conference. Bucharest, Romania:IEEE, 2012. 874-878
    [49] Lu Z Q, Ying R D, Jiang S X, Liu P L, Yu M X. Distributed compressed sensing off the grid. IEEE Signal Processing Letters, 2015, 22(1):105-109 doi: 10.1109/LSP.2014.2349904
    [50] Gardner W A. Exploitation of spectral redundancy in cyclostationary signals. IEEE Signal Processing Magazine, 1991, 8(2):14-36 doi: 10.1109/79.81007
    [51] Gardner W A. Spectral correlation of modulated signals:Part I!-!analog modulation. IEEE Transactions on Communications, 1987, 35(6):584-594 doi: 10.1109/TCOM.1987.1096820
    [52] Gardner W A, Brown W, Chen C K. Spectral correlation of modulated signals:Part II!-!digital modulation. IEEE Transactions on Communications, 1987, 35(6):595-601 doi: 10.1109/TCOM.1987.1096816
    [53] Gardner W A. Measurement of spectral correlation. IEEE Transactions on Acoustics Speech & Signal Processing, 1986, 34(5):1111-1123
    [54] Tian Z. Cyclic feature based wideband spectrum sensing using compressive sampling. In:Proceedings of the 2011 IEEE International Conference on Communications. Kyoto, Japan:IEEE, 2011. 1-5
    [55] Bollig A, Mathar R. Dictionary-based reconstruction of the cyclic autocorrelation via l1-minimization for cyclostationary spectrum sensing. In:Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, Canada:IEEE, 2013. 4908-4912
    [56] Chen X S, Zhang X W, Yang J B, Qiao L. Gridless sparse reconstruction for the cyclic autocorrelation estimation. In:Proceedings of IEEE International Conference on Advanced Communication Technology. PyeongChang, Korea (South):IEEE, 2016. 254-259
    [57] Ariananda D D, Leus G. Non-uniform sampling for compressive cyclic spectrum reconstruction. In:Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing. Florence, Italy:IEEE, 2014. 41-45
    [58] Cohen D, Rebeiz E, Eldar Y C, Cabric D. Cyclic spectrum reconstruction and cyclostationary detection from sub-Nyquist samples. In:Proceedings of the 14th IEEE Workshop on Signal Processing Advances in Wireless Communications. Darmstadt, Germany:IEEE, 2013. 425-429
    [59] Mishali M, Eldar Y C. Blind multiband signal reconstruction:compressed sensing for analog signals. IEEE Transactions on Signal Processing, 2009, 57(3):993-1009 doi: 10.1109/TSP.2009.2012791
    [60] Leus G, Tian Z. Recovering second-order statistics from compressive measurements. In:Proceedings of the 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing. San Juan, Puerto Rico:IEEE, 2011. 337-340
    [61] Tian Z, Tafesse Y, Sadler B M. Cyclic feature detection with sub-Nyquist sampling for wideband spectrum sensing. IEEE Journal of Selected Topics in Signal Processing, 2012, 6(1):58-69 doi: 10.1109/JSTSP.2011.2181940
    [62] Chi Y J. Joint sparsity recovery for spectral compressed sensing. In:Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing. Florence, Italy:IEEE, 2014. 3938-3942
    [63] Mishra K V, Cho M, Kruger A, Xu W Y. Super-resolution line spectrum estimation with block priors. In:Proceedings of the 48th Asilomar Conference on Signals, Systems and Computers. Pacific Grove, USA:IEEE, 2014. 1211-1215
    [64] Liao W J, Fannjiang A. MUSIC for single-snapshot spectral estimation:stability and super-resolution. Applied & Computational Harmonic Analysis, 2016, 40(1):33-67
    [65] Lu Z Q, Ying R D, Jiang S X, Zhang Z H, Liu P L, Yu W X. Spectral compressive sensing with model selection. In:Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing. Florence, Italy:IEEE, 2014. 1045-1049
    [66] Nielsen J K, Christensen M G, Jensen S H. Joint sparsity and frequency estimation for spectral compressive sensing. In:Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing. Florence, Italy:IEEE, 2014. 1035-1039
    [67] Pillonetto G, Chen T S, Chiuso A, de Nicolao G, Ljung L. Regularized linear system identification using atomic, nuclear and kernel-based norms:the role of the stability constraint[Online], available: http://arxiv.org/abs/1507.00564, July 2, 2015
    [68] Chi Y J, Chen Y X. Compressive two-dimensional harmonic retrieval via atomic norm minimization. IEEE Transactions on Signal Processing, 2015, 63(4):1030-1042 doi: 10.1109/TSP.2014.2386283
    [69] Liu C C, Ding L, Chen W D. A correction and generalization to the sparse learning via iterative minimization method for target off the grid in MIMO radar imaging. In:Proceedings of the 46th IEEE Asilomar Conference on Circuits, Systems and Computers. Pacific Grove, USA:IEEE, 2012. 895-899
    [70] Fannjiang A, Tseng H C. Compressive radar with off-grid targets:a perturbation approach. Inverse Problems, 2013, 29(5):054008 doi: 10.1088/0266-5611/29/5/054008
    [71] Prünte L. Off-grid compressed sensing for GMTI using SAR images. In:Proceedings of 2013 Conference on Signal Processing with Adaptive Sparse Structured Representations. Lausanne, Switzerland:CADMOS, 2013. 248-251
    [72] Ranganathan K. Enabling off-the-grid telephony:an adaptive probabilistic model for broadcasting in ad-hoc mobile phone networks. Simulation Modelling Practice & Theory, 2014, 49:73-84
  • 加载中
图(3)
计量
  • 文章访问数:  2789
  • HTML全文浏览量:  118
  • PDF下载量:  1892
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-26
  • 录用日期:  2015-12-21
  • 刊出日期:  2016-03-01

目录

    /

    返回文章
    返回