[1]
|
Baraniuk R G. Compressive sensing[lecture notes]. IEEE Signal Processing Magazine, 2007, 24(4):118-121 doi: 10.1109/MSP.2007.4286571
|
[2]
|
Candes E J, Wakin M B. An introduction to compressive sampling. IEEE Signal Processing Magazine, 2008, 25(2):21-30 doi: 10.1109/MSP.2007.914731
|
[3]
|
Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306 doi: 10.1109/TIT.2006.871582
|
[4]
|
Theodoridis S, Kopsinis Y, Slavakis K. Sparsity-aware learning and compressed sensing:an overview. Academic Press Library in Signal Processing. New York:Academic Press, 2012. 1271-1377
|
[5]
|
Davenport M A, Boufounos P T, Wakin M B, Baraniuk R G. Signal processing with compressive measurements. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2):445-460 doi: 10.1109/JSTSP.2009.2039178
|
[6]
|
Ramasamy D, Venkateswaran S, Madhow U. Compressive parameter estimation in AWGN. IEEE Transactions on Signal Processing, 2014, 62(8):2012-2027 doi: 10.1109/TSP.2014.2306180
|
[7]
|
Chen X S, Zhang X W, Yang J B, Sun M, Yang W W. Cramer-rao bounds for compressive frequency estimation. IEICE Transactions on Fundamentals of Electronics, Communications & Computer Sciences, 2015, 98(3):874-877
|
[8]
|
Huang H, Misra S, Tang W, Barani H, Al-Azzawi H. Applications of compressed sensing in communications networks[Online], available: http://arxiv.org/abs/1305.3002, May 14, 2013.
|
[9]
|
Willett R M, Marcia R F, Nichols J M. Compressed sensing for practical optical imaging systems:a tutorial. Optical Engineering, 2011, 50(7):072601 doi: 10.1117/1.3596602
|
[10]
|
Mishali M, Eldar Y C. Wideband spectrum sensing at sub-Nyquist rates[applications corner]. IEEE Signal Processing Magazine, 2011, 28(4):102-135 doi: 10.1109/MSP.2011.941094
|
[11]
|
Mishali M, Eldar Y C. From theory to practice:sub-Nyquist sampling of sparse wideband analog signals. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2):375-391 doi: 10.1109/JSTSP.2010.2042414
|
[12]
|
Elad M. Sparse and Redundant Representations:from Theory to Applications in Signal and Image Processing. New York:Springer, 2010. 1-10
|
[13]
|
Donoho D L, Elad M. Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization. Proceedings of the National Academy of Sciences, 2003, 100(5):2197-2202 doi: 10.1073/pnas.0437847100
|
[14]
|
Stojnic M, Xu W Y, Hassibi B. Compressed sensing of approximately sparse signals. In:Proceedings of the 2008 IEEE International Symposium on Information Theory. Toronto, Canada:IEEE, 2008. 2182-2186
|
[15]
|
Stoica P, Babu P. Sparse estimation of spectral lines:grid selection problems and their solutions. IEEE Transactions on Signal Processing, 2012, 60(2):962-967 doi: 10.1109/TSP.2011.2175222
|
[16]
|
Stoica P, Moses R L. Spectral Analysis of Signals. New Jersey:Prentice Hall, 2005. 1-12
|
[17]
|
Baraniuk R, Steeghs P. Compressive radar imaging. In:Proceedings of the 2007 IEEE Radar Conference. Boston, USA:IEEE, 2007. 128-133
|
[18]
|
Duarte M F, Baraniuk R G. Spectral compressive sensing. Applied & Computational Harmonic Analysis, 2013, 35(1):111-129
|
[19]
|
Bajwa W U, Haupt J, Sayeed A M, Nowak R. Compressed channel sensing:a new approach to estimating sparse multipath channels. Proceedings of the IEEE, 2010, 98(6):1058-1076 doi: 10.1109/JPROC.2010.2042415
|
[20]
|
Herman M A, Strohmer T. High-resolution radar via compressed sensing. IEEE Transactions on Signal Processing, 2009, 57(6):2275-2284 doi: 10.1109/TSP.2009.2014277
|
[21]
|
Malioutov D, Cetin M, Willsky A S. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 2005, 53(8):3010-3022 doi: 10.1109/TSP.2005.850882
|
[22]
|
Yang Z, Xie L H. On gridless sparse methods for line spectral estimation from complete and incomplete data. IEEE Transactions on Signal Processing, 2015, 63(12):3139-3153 doi: 10.1109/TSP.2015.2420541
|
[23]
|
Tang G G, Bhaskar B N, Shah P, Recht B. Compressed sensing off the grid. IEEE Transactions on Information Theory, 2013, 59(11):7465-7490 doi: 10.1109/TIT.2013.2277451
|
[24]
|
Chi Y J, Scharf L L, Pezeshki A, Calderbank A R. Sensitivity to basis mismatch in compressed sensing. IEEE Transactions on Signal Processing, 2011, 59(5):2182-2195 doi: 10.1109/TSP.2011.2112650
|
[25]
|
Herman M A, Strohmer T. General perturbations in compressed sensing. In:Proceedings of Workshop on Signal Processing with Adaptive Sparse Structured Representations. Saint-Malo, France:IEEE, 2009. 145-149
|
[26]
|
Herrman M A, Strohmer T. General perturbations of sparse signals in compressed sensing. In:Proceedings of the 2009 IEEE International Conference on Sampling Theory and Applications. Marseilles, France:IEEE, 2009. 273-276
|
[27]
|
Herman M A, Needell D. Mixed operators in compressed sensing. In:Proceedings of the 44th Annual Conference on Information Sciences and Systems. Princeton, NJ:IEEE, 2010. 1-6
|
[28]
|
Candés E J, Fernandez-Granda C. Towards a mathematical theory of super-resolution. Communications on Pure & Applied Mathematics, 2014, 67(6):906-956
|
[29]
|
Chandrasekaran V, Recht B, Parrilo P A, Willsky A S. The convex algebraic geometry of linear inverse problems. In:Proceedings of the 48th Annual Allerton Conference on Communication, Control, and Computing. Allerton, USA:IEEE, 2010. 699-703
|
[30]
|
Herman M A, Strohmer T. General deviants:an analysis of perturbations in compressed sensing. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2):342-349 doi: 10.1109/JSTSP.2009.2039170
|
[31]
|
Chandrasekaran V, Recht B, Parrilo P A, Willsky A S. The convex geometry of linear inverse problems. Foundations of Computational Mathematics, 2012, 12(6):805-849 doi: 10.1007/s10208-012-9135-7
|
[32]
|
Candés E J, Fernandez-Granda C. Super-resolution from noisy data. Journal of Fourier Analysis & Applications, 2013, 19(6):1229-1254
|
[33]
|
Azais J M, de Castro Y, Gamboa F. Spike detection from inaccurate samplings. Applied & Computational Harmonic Analysis, 2015, 38(2):177-195
|
[34]
|
Chen Y X, Chi Y J. Robust spectral compressed sensing via structured matrix completion. IEEE Transactions on Information Theory, 2014, 60(10):6576-6601 doi: 10.1109/TIT.2014.2343623
|
[35]
|
Eldar Y C, Rauhut H. Average case analysis of multichannel sparse recovery using convex relaxation. IEEE Transactions on Information Theory, 2010, 56(1):505-519 doi: 10.1109/TIT.2009.2034789
|
[36]
|
Liang Y J, Ying R D, Lu Z Q, Liu P L. Off-grid direction of arrival estimation based on joint spatial sparsity for distributed sparse linear arrays. Sensors, 2014, 14(11):21981-22000 doi: 10.3390/s141121981
|
[37]
|
Grant M, Boyd S P. CVX:MATLAB software for disciplined convex programming. Global Optimization, 2014. 155-210
|
[38]
|
Bhaskar B N, Tang G G, Recht B. Atomic norm denoising with applications to line spectral estimation. IEEE Transactions on Signal Processing, 2013, 61(23):5987-5999 doi: 10.1109/TSP.2013.2273443
|
[39]
|
Bhaskar B N, Recht B. Atomic norm denoising with applications to line spectral estimation. In:Proceedings of the 49th Annual Allerton Conference on Communication, Control, and Computing. Monticello, USA:IEEE, 2011. 261-268
|
[40]
|
Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations & Trends in Machine Learning, 2011, 3(1):1-122
|
[41]
|
Chi Y J, Chen Y X. Compressive recovery of 2-D off-grid frequencies. In:Proceedings of the 2013 Asilomar Conference on Signals, Systems and Computers. Pacific Grove, USA:IEEE, 2013. 687-691
|
[42]
|
Xu W Y, Cai J F, Mishra K V, Cho M, Kruger A. Precise semidefinite programming formulation of atomic norm minimization for recovering d-dimensional (d≥2) off-the-grid frequencies. In:Proceedings of the 2014 IEEE Workshop on Information Theory and Applications. San Diego, USA:IEEE, 2014. 1-4
|
[43]
|
Yang Z, Xie L H. Continuous compressed sensing with a single or multiple measurement vectors. In:Proceedings of the 2014 IEEE Workshop on Statistical Signal Processing. Gold Coast, USA:IEEE, 2014. 288-291
|
[44]
|
Krim H, Viberg M. Two decades of array signal processing research:the parametric approach. IEEE Signal Processing Magazine, 1996, 13(4):67-94 doi: 10.1109/79.526899
|
[45]
|
Yang Z, Xie L H, Zhang C S. A discretization-free sparse and parametric approach for linear array signal processing. IEEE Transactions on Signal Processing, 2014, 62(19):4959-4973 doi: 10.1109/TSP.2014.2339792
|
[46]
|
Ibrahim M, Romer F, Alieiev R, Del Galdo G, Thoma R S. On the estimation of grid offsets in CS-based direction-of-arrival estimation. In:Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing. Florence, Italy:IEEE, 2014. 6776-6780
|
[47]
|
Liu L, Wei P. Off-grid DOA estimation based on analysis of the convexity of maximum likelihood function[Online], available: http://arxiv.org/abs/1412.6720, December 21, 2014
|
[48]
|
Gretsistas A, Plumbley M D. An alternating descent algorithm for the off-grid DOA estimation problem with sparsity constraints. In:Proceedings of the 20th European Signal Processing Conference. Bucharest, Romania:IEEE, 2012. 874-878
|
[49]
|
Lu Z Q, Ying R D, Jiang S X, Liu P L, Yu M X. Distributed compressed sensing off the grid. IEEE Signal Processing Letters, 2015, 22(1):105-109 doi: 10.1109/LSP.2014.2349904
|
[50]
|
Gardner W A. Exploitation of spectral redundancy in cyclostationary signals. IEEE Signal Processing Magazine, 1991, 8(2):14-36 doi: 10.1109/79.81007
|
[51]
|
Gardner W A. Spectral correlation of modulated signals:Part I!-!analog modulation. IEEE Transactions on Communications, 1987, 35(6):584-594 doi: 10.1109/TCOM.1987.1096820
|
[52]
|
Gardner W A, Brown W, Chen C K. Spectral correlation of modulated signals:Part II!-!digital modulation. IEEE Transactions on Communications, 1987, 35(6):595-601 doi: 10.1109/TCOM.1987.1096816
|
[53]
|
Gardner W A. Measurement of spectral correlation. IEEE Transactions on Acoustics Speech & Signal Processing, 1986, 34(5):1111-1123
|
[54]
|
Tian Z. Cyclic feature based wideband spectrum sensing using compressive sampling. In:Proceedings of the 2011 IEEE International Conference on Communications. Kyoto, Japan:IEEE, 2011. 1-5
|
[55]
|
Bollig A, Mathar R. Dictionary-based reconstruction of the cyclic autocorrelation via l1-minimization for cyclostationary spectrum sensing. In:Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, Canada:IEEE, 2013. 4908-4912
|
[56]
|
Chen X S, Zhang X W, Yang J B, Qiao L. Gridless sparse reconstruction for the cyclic autocorrelation estimation. In:Proceedings of IEEE International Conference on Advanced Communication Technology. PyeongChang, Korea (South):IEEE, 2016. 254-259
|
[57]
|
Ariananda D D, Leus G. Non-uniform sampling for compressive cyclic spectrum reconstruction. In:Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing. Florence, Italy:IEEE, 2014. 41-45
|
[58]
|
Cohen D, Rebeiz E, Eldar Y C, Cabric D. Cyclic spectrum reconstruction and cyclostationary detection from sub-Nyquist samples. In:Proceedings of the 14th IEEE Workshop on Signal Processing Advances in Wireless Communications. Darmstadt, Germany:IEEE, 2013. 425-429
|
[59]
|
Mishali M, Eldar Y C. Blind multiband signal reconstruction:compressed sensing for analog signals. IEEE Transactions on Signal Processing, 2009, 57(3):993-1009 doi: 10.1109/TSP.2009.2012791
|
[60]
|
Leus G, Tian Z. Recovering second-order statistics from compressive measurements. In:Proceedings of the 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing. San Juan, Puerto Rico:IEEE, 2011. 337-340
|
[61]
|
Tian Z, Tafesse Y, Sadler B M. Cyclic feature detection with sub-Nyquist sampling for wideband spectrum sensing. IEEE Journal of Selected Topics in Signal Processing, 2012, 6(1):58-69 doi: 10.1109/JSTSP.2011.2181940
|
[62]
|
Chi Y J. Joint sparsity recovery for spectral compressed sensing. In:Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing. Florence, Italy:IEEE, 2014. 3938-3942
|
[63]
|
Mishra K V, Cho M, Kruger A, Xu W Y. Super-resolution line spectrum estimation with block priors. In:Proceedings of the 48th Asilomar Conference on Signals, Systems and Computers. Pacific Grove, USA:IEEE, 2014. 1211-1215
|
[64]
|
Liao W J, Fannjiang A. MUSIC for single-snapshot spectral estimation:stability and super-resolution. Applied & Computational Harmonic Analysis, 2016, 40(1):33-67
|
[65]
|
Lu Z Q, Ying R D, Jiang S X, Zhang Z H, Liu P L, Yu W X. Spectral compressive sensing with model selection. In:Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing. Florence, Italy:IEEE, 2014. 1045-1049
|
[66]
|
Nielsen J K, Christensen M G, Jensen S H. Joint sparsity and frequency estimation for spectral compressive sensing. In:Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing. Florence, Italy:IEEE, 2014. 1035-1039
|
[67]
|
Pillonetto G, Chen T S, Chiuso A, de Nicolao G, Ljung L. Regularized linear system identification using atomic, nuclear and kernel-based norms:the role of the stability constraint[Online], available: http://arxiv.org/abs/1507.00564, July 2, 2015
|
[68]
|
Chi Y J, Chen Y X. Compressive two-dimensional harmonic retrieval via atomic norm minimization. IEEE Transactions on Signal Processing, 2015, 63(4):1030-1042 doi: 10.1109/TSP.2014.2386283
|
[69]
|
Liu C C, Ding L, Chen W D. A correction and generalization to the sparse learning via iterative minimization method for target off the grid in MIMO radar imaging. In:Proceedings of the 46th IEEE Asilomar Conference on Circuits, Systems and Computers. Pacific Grove, USA:IEEE, 2012. 895-899
|
[70]
|
Fannjiang A, Tseng H C. Compressive radar with off-grid targets:a perturbation approach. Inverse Problems, 2013, 29(5):054008 doi: 10.1088/0266-5611/29/5/054008
|
[71]
|
Prünte L. Off-grid compressed sensing for GMTI using SAR images. In:Proceedings of 2013 Conference on Signal Processing with Adaptive Sparse Structured Representations. Lausanne, Switzerland:CADMOS, 2013. 248-251
|
[72]
|
Ranganathan K. Enabling off-the-grid telephony:an adaptive probabilistic model for broadcasting in ad-hoc mobile phone networks. Simulation Modelling Practice & Theory, 2014, 49:73-84
|