2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于雾气浓度估计的图像去雾算法

鞠铭烨 张登银 纪应天

鞠铭烨, 张登银, 纪应天. 基于雾气浓度估计的图像去雾算法. 自动化学报, 2016, 42(9): 1367-1379. doi: 10.16383/j.aas.2016.c150525
引用本文: 鞠铭烨, 张登银, 纪应天. 基于雾气浓度估计的图像去雾算法. 自动化学报, 2016, 42(9): 1367-1379. doi: 10.16383/j.aas.2016.c150525
JU Ming-Ye, ZHANG Deng-Yin, JI Ying-Tian. Image Haze Removal Algorithm Based on Haze Thickness Estimation. ACTA AUTOMATICA SINICA, 2016, 42(9): 1367-1379. doi: 10.16383/j.aas.2016.c150525
Citation: JU Ming-Ye, ZHANG Deng-Yin, JI Ying-Tian. Image Haze Removal Algorithm Based on Haze Thickness Estimation. ACTA AUTOMATICA SINICA, 2016, 42(9): 1367-1379. doi: 10.16383/j.aas.2016.c150525

基于雾气浓度估计的图像去雾算法

doi: 10.16383/j.aas.2016.c150525
基金项目: 

江苏省高校自然科学研究重大项目 15KJA510002

国家自然科学基金 61571241

江苏省产学研前瞻性联合研究项目 BY2014014

详细信息
    作者简介:

    鞠铭烨南京邮电大学物联网学院博士研究生.主要研究方向为图像去雾与图像增强.E-mail:2014070245@njupt.edu.cn

    纪应天南京邮电大学物联网学院硕士研究生.主要研究方向为图像处理, 压缩感知和分布式视频编码.E-mail:jiyingtian@foxmail.com

    通讯作者:

    张登银南京邮电大学物联网学院教授.主要研究方向为信号与信息处理, 网络信息安全技术.本文通信作者.E-mail:zhangdy@njupt.edu.cn

Image Haze Removal Algorithm Based on Haze Thickness Estimation

Funds: 

Key University Science Research Project of Jiangsu Province 15KJA510002

National Natural Science Foundation of China 61571241

Prospective Joint Research Project of Jiangsu Province BY2014014

More Information
    Author Bio:

    Ph. D. candidate at the School of Internet of Things, Nanjing University of Posts and Telecommunications. His research interest covers image dehazing and image enhancement

    Master student at the School of Internet of Things, Nanjing University of Posts and Telecommunications. His research interest covers image processing, compressed sensing, and distributed video coding

    Corresponding author: ZHANG Deng-Yin Professor at the School of Internet of Things, Nanjing University of Posts and Telecommunications. His research interest covers signal and information processing, networking technique and information security. Corresponding author of this paper
  • 摘要: 根据雾气浓度的视觉特征,提出一种雾气浓度估计模型.在此基础上,结合大气散射模型,提出一种新的图像去雾算法.首先,基于雾气浓度估计模型计算出雾气浓度量化图,利用模糊聚类算法在量化图中识别出雾气最浓区域并估计出全球光; 然后,对量化图中的“非雾气最浓”区域再次进行聚类处理,根据文中所提最优透射率评价指标估计出每个聚类单元的透射率,将全球光与透射图以及有雾图像导入散射模型,便可达到去雾的目的; 最后,针对去雾后图像较实际场景偏暗,提出一种基于小波域的多尺度锐化算法进行增强处理,以改善其主观视觉质量.实验结果表明,本文算法与现有主流算法相比,具有更好的去雾效果,并且其计算速度也相对较快.
  • 图  1  现有去雾算法的局限性((a), (e), (i)有雾图像; (b)Tan算法; (c)Nishino算法; (f)Fattal算法; (g)He算法; (j)Tarel算法; (k)Pang算法; (d), (h), (l)本文算法)

    Fig.  1  The limitations of the existing algorithms ((a), (e), (i) Hazy image; (b) Tan; (c) Nishino; (f) Fattal; (g) He; (j) Tarel; (k) Pang; (d), (h), (l) Proposed)

    图  2  雾气浓度估计((a)有雾图像; (b)粗糙雾气浓度量化图; (c)雾气浓度量化图)

    Fig.  2  Haze thickness estimation ((a) Hazy images; (b) Rough haze thickness quantitative maps; (c) Refined haze thickness quantitative maps)

    图  3  全球光定位中间过程((a)有雾图像; (b)雾气浓度量化图; (c)预选区域; (d)平坦分布图; (e)候选区域)

    Fig.  3  The intermediate process of global light localization ((a) Hazy image; (b) Refined haze thickness quantitative map; (c) Pre-selected region; (d) Flat distribution map; (e) Candidate region)

    图  4  不同全球光对应的去雾效果比较((a)位置示意图; (b) Namer算法; (c) He算法; (d) Kim算法; (e)本文算法)

    Fig.  4  Dehazed images by different global light estimation methods ((a) Location schematic diagram; (b) Namer; (c) He; (d) Kim; (e) Proposed)

    图  5  卫星图像去雾实验((a)有雾图像; (b)对比度最大; (c)本文所提指标Ψ)

    Fig.  5  Satellite image dehazing experiment ((a) Hazy image; (b) Maximum contrast; (c) Index Ψ)

    图  6  标准差、饱和度以及指标Ψ的变化曲线

    Fig.  6  The curves of standard deviation, saturation, and index Ψ

    图  7  识别天空准确率

    Fig.  7  Sky recognition accuracy

    图  8  对比分析((a)基于指标Ψ与邻域估计法得到的透射图; (b)基于指标Ψ与聚类估计法得到的透射图; (c)透射图(a)对应的去雾效果; (d)透射图(b)对应的去雾效果; (e)基于黑色通道先验与邻域估计法得到的透射图; (f)基于黑色通道先验与聚类估计法得到的透射图; (g)透射图(e)对应的去雾效果; (h)透射图(f)对应的去雾效果)

    Fig.  8  Comparative analysis ((a) Transmission map with neighborhood and index Ψ; (b) Transmission map with cluster unit and index Ψ; (c) Dehazed image using (a); (d) Dehazed image using (b); (e) Transmission map with neighborhood and dark channel prior; (f) Transmission map with cluster unit and dark channel prior; (g) Dehazed image using (e); (h) Dehazed image using (f))

    图  9  各后处理算法的增强效果对比((a), (e)去雾后的图像; (b), (f) Yan算法; (c), (g)张登银算法; (d), (h)本文算法)

    Fig.  9  Comparison of enhanced images by different post-processing algorithms ((a), (e) Dehazed images; (b), (f) Yan; (c), (g) Zhang; (d), (h) Proposed)

    图  10  本文算法去雾效果(上:有雾图像; 中:透射图; 下:去雾效果)

    Fig.  10  Dehazed images by proposed method (Top: hazy images; Middle: transmission map; Bottom: dehazed images)

    图  11  综合比较

    Fig.  11  Comprehensive comparison

    图  12  计算速度曲线

    Fig.  12  The curves of computing speed

    图  13  失效例子

    Fig.  13  Failure case

    表  1  图像质量评价指标

    Table  1  Image quality evaluation parameters

    实验对象 Ancuti算法 Zhu算法 Tarel算法 Tan算法 He算法 Meng算法 本文算法
    评价指标 r S H r S H r S H r S H r S H r S H r S H
    Dolls 1.22 0.73 0.04 2.11 0.81 0.00 2.63 0.66 0.32 3.60 0.28 0.34 2.67 0.65 0.00 2.76 0.68 0.01 2.98 0.72 0.08
    Manhattan 1.52 0.80 0.33 1.32 0.82 0.01 1.98 0.60 0.03 3.17 0.73 0.00 1.76 0.84 0.01 2.12 0.78 0.28 1.97 0.81 0.04
    Cityscape 1.81 0.73 0.27 2.81 0.70 0.08 4.70 0.38 0.20 6.25 0.29 0.72 4.43 0.52 0.08 3.25 0.64 0.03 4.47 0.62 0.01
    Mountain 1.08 0.67 0.01 1.25 0.78 0.02 1.80 0.80 0.01 2.06 0.74 0.05 1.13 0.82 0.00 1.66 0.83 0.17 1.46 0.84 0.01
    Town 1.37 0.88 0.14 1.43 0.82 0.05 2.59 0.73 0.14 2.81 0.48 0.32 1.77 0.78 0.01 2.06 0.77 0.67 2.10 0.92 0.03
    Pizza 1.54 0.90 0.17 1.07 0.92 0.01 1.71 0.79 0.03 3.00 0.32 0.72 1.30 0.96 0.02 1.37 0.90 0.15 1.18 0.93 0.00
    下载: 导出CSV
  • [1] Yadav G, Maheshwari S, Agarwal A. Contrast limited adaptive histogram equalization based enhancement for real time video system. In: Proceedings of the 2014 International Conference on Advances in Computing, Communications, and Informatics. New Delhi, India: IEEE, 2014. 2392-2397
    [2] Ancuti C O, Ancuti C. Single image dehazing by multi-scale fusion. IEEE Transactions on Image Processing, 2013, 22(8): 3271-3282 doi: 10.1109/TIP.2013.2262284
    [3] Farid H. Blind inverse gamma correction. IEEE Transactions on Image Processing, 2001, 10(10): 1428-1433 doi: 10.1109/83.951529
    [4] 禹晶, 李大鹏, 廖庆敏.基于颜色恒常性的低照度图像视见度增强.自动化学报, 2011, 37(8): 923-931 http://www.aas.net.cn/CN/abstract/abstract17511.shtml

    Yu Jing, Li Da-Peng, Liao Qing-Min. Color constancy-based visibility enhancement of color images in low-light conditions. Acta Automatica Sinica, 2011, 37(8): 923-931 http://www.aas.net.cn/CN/abstract/abstract17511.shtml
    [5] 李建奇, 阳春华, 朱红求, 曹斌芳, 刘金平.基于改进方向波变换的泡沫图像增强新方法.中南大学学报(自然科学版), 2013, 44(3): 1030-1036 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201303028.htm

    Li Jian-Qi, Yang Chun-Hua, Zhu Hong-Qiu, Cao Bin-Fang, Liu Jin-Ping. A new bubble image enhancement algorithm based on improved directionlet transform. Journal of Central South UniversityScience and Technology), 2013, 44(3): 1030-1036 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201303028.htm
    [6] Tan R T. Visibility in bad weather from a single image. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8 http://www.oalib.com/references/16885065
    [7] Nishino K, Kratz L, Lombardi S. Bayesian defogging. International Journal of Computer Vision, 2012, 98(3): 263-278 doi: 10.1007/s11263-011-0508-1
    [8] Fattal R. Single image dehazing. ACM Transactions on Graphics, 2008, 27(3): Article No. 72 http://cn.bing.com/academic/profile?id=2028990532&encoded=0&v=paper_preview&mkt=zh-cn
    [9] Tarel J P, Hautiére N. Fast visibility restoration from a single color or gray level image. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 2201-2208
    [10] He K, Sun J, Tang X. Single image haze removal using dark channel prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353 doi: 10.1109/TPAMI.2010.168
    [11] Wang J B, He N, Zhang L L, Lu K. Single image dehazing with a physical model and dark channel prior. Neurocomputing, 2015, 149: 718-728 doi: 10.1016/j.neucom.2014.08.005
    [12] 陈书贞, 任占广, 练秋生.基于改进暗通道和导向滤波的单幅图像去雾算法.自动化学报, 2016, 42(3): 455-465 http://www.aas.net.cn/CN/abstract/abstract18833.shtml

    Chen Shu-Zhen, Ren Zhan-Guang, Lian Qiu-Sheng. Single image dehazing algorithm based on improved dark channel prior and guided filter. Acta Automatica Sinica, 2016, 42(3): 455-465 http://www.aas.net.cn/CN/abstract/abstract18833.shtml
    [13] 张小刚, 唐美玲, 陈华, 汤红忠.一种结合双区域滤波和图像融合的单幅图像去雾算法.自动化学报, 2014, 40(8): 1733-1739 http://www.aas.net.cn/CN/abstract/abstract18440.shtml

    Zhang Xiao-Gang, Tang Mei-Ling, Chen Hua, Tang Hong-Zhong. A dehazing method in single image based on double-area filter and image fusion. Acta Automatica Sinica, 2014, 40(8): 1733-1739 http://www.aas.net.cn/CN/abstract/abstract18440.shtml
    [14] 蒋建国, 侯天峰, 齐美彬.改进的基于暗原色先验的图像去雾算法.电路与系统学报, 2011, 16(2): 7-12 http://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ201502002.htm

    Jiang Jian-Guo, Hou Tian-Feng, Qi Mei-Bin. Improved algorithm on image haze removal using dark channel prior. Journal of Circuits and Systems, 2011, 16(2): 7-12 http://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ201502002.htm
    [15] 李加元, 胡庆武, 艾明耀, 严俊.结合天空识别和暗通道原理的图像去雾.中国图象图形学报, 2015, 20(4): 514-519 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201504008.htm

    Li Jia-Yuan, Hu Qing-Wu, Ai Ming-Yao, Yan Jun. Image haze removal based on sky region detection and dark channel prior. Journal of Image and Graphics, 2015, 20(4): 514-519 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201504008.htm
    [16] Koschmeider H. Theorie der horizontalen sichtweite. Beiträge zur Physik der Freien Atmosphäre, 1924, 12: 33-53
    [17] He K M, Sun J, Tang X O. Guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409 doi: 10.1109/TPAMI.2012.213
    [18] Namer E, Schechner Y Y. Advanced visibility improvement based on polarization filtered images. In: Proceedings of the 2005 Polarization Science and Remote Sensing II. San Diego, USA: SPIE, 2005. 36-45
    [19] Kim J H, Jang W D, Sim J Y, Kim C S. Optimized contrast enhancement for real-time image and video dehazing. Journal of Visual Communication and Image Representation, 2013, 24(3): 410-425 doi: 10.1016/j.jvcir.2013.02.004
    [20] Uchiyama T, Arbib M A. Color image segmentation using competitive learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(12): 1197-1206 doi: 10.1109/34.387488
    [21] 常发亮, 刘静, 乔谊正.基于自组织神经网络的彩色图像自适应聚类分割.控制与决策, 2006, 21(4): 449-452 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC200604018.htm

    Chang Fa-Liang, Liu Jing, Qiao Yi-Zheng. Color image self-adapting clustering segmentation based on self-organizing feature map network. Control and Decision, 2006, 21(4): 449-452 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC200604018.htm
    [22] Duan Ming-Xiu. Research and Application of Hierarchical Clustering Algorithm [Master dissertation], Central South University, China, 2009

    段明秀.层次聚类算法的研究及应用[硕士学位论文], 中南大学, 中国, 2009.
    [23] Hartigan J A, Wong M A. A K-means clustering algorithm. Applied Statistics, 1979, 28(1): 100-108 doi: 10.2307/2346830
    [24] Bezdek J C, Ehrlich R, Full W. FCM: the fuzzy c-means clustering algorithm. Computers and Geosciences, 1984, 10(2-3): 191-203 doi: 10.1016/0098-3004(84)90020-7
    [25] Hautiére N, Tarel J P, Aubert D, Dumont E. Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Analysis and Stereology, 2008, 27(2): 87-95 doi: 10.5566/ias.v27.p87-95
    [26] Xiao C X, Gan J J. Fast image dehazing using guided joint bilateral filter. The Visual Computer, 2012, 28(6-8): 713-721 doi: 10.1007/s00371-012-0679-y
    [27] Li J F, Zhang H, Yuan D, Sun M G. Single image dehazing using the change of detail prior. Neurocomputing, 2015, 156: 1-11 doi: 10.1016/j.neucom.2015.01.026
    [28] Burrus C S, Gopinath R A, Guo H T. Introduction to Wavelets and Wavelet Transforms. New Jersey: Prentice Hall, 1998.
    [29] Tian Y, Xia D, Xu Y P. Single foggy image restoration based on spatial correlation analysis of dark channel prior. Journal of Systems Engineering and Electronics, 2014, 25(4): 688-696 doi: 10.1109/JSEE.2014.00079
    [30] 张登银, 鞠铭烨, 王雪梅.一种基于暗通道先验的快速图像去雾算法.电子学报, 2015, 43(7): 1437-1443 http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201507029.htm

    Zhang Deng-Yin, Ju Ming-Ye, Wang Xue-Mei. A fast image daze removal algorithm using dark channel prior. Acta Electronica Sinica, 2015, 43(7): 1437-1443 http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201507029.htm
    [31] Zhu Q, Mai J, Shao L. A fast single image haze removal algorithm using color attenuation prior. IEEE Transactions on Image Processing, 2015, 24(11): 3522-3533 doi: 10.1109/TIP.2015.2446191
    [32] Meng G, Wang Y, Duan J, Xiang S, Pan C. Efficient image dehazing with boundary constraint and contextual regularization. In: Proceedings of the 2013 IEEE International Conference on Computer Vision. Sydney, Australia: IEEE, 2013. 617-624
    [33] Wang Z, Bovik A C, Sheikh H R, Simoncelli E P. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4): 600-612 doi: 10.1109/TIP.2003.819861
    [34] Jobson D J, Rahman Z U, Woodell G A. Statistics of visual representation. In: Proceedings of the 2002 Visual Information Processing. Orlando, FL: SPIE, 2002. 25-35
    [35] Ling Z G, Li S T, Wang Y N, Shen H, Lu X. Adaptive transmission compensation via human visual system for efficient single image dehazing. Visual Computer, 2016, 32(5): 653-662 doi: 10.1007/s00371-015-1081-3
    [36] 刘海波, 杨杰, 吴正平, 张庆年, 邓勇.基于暗通道先验和Retinex理论的快速单幅图像去雾方法.自动化学报, 2015, 41(7): 1264-1273 http://www.aas.net.cn/CN/abstract/abstract18700.shtml

    Liu Hai-Bo, Yang Jie, Wu Zheng-Ping, Zhang Qing-Nian, Deng Yong. A fast single image dehazing method based on dark channel prior and Retinex theory. Acta Automatica Sinica, 2015, 41(7): 1264-1273 http://www.aas.net.cn/CN/abstract/abstract18700.shtml
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  3837
  • HTML全文浏览量:  867
  • PDF下载量:  1102
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-19
  • 录用日期:  2016-03-20
  • 刊出日期:  2016-09-01

目录

    /

    返回文章
    返回