2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空间聚集特征的沥青路面裂缝检测方法

张德津 李清泉 陈颖 曹民 何莉

张德津, 李清泉, 陈颖, 曹民, 何莉. 基于空间聚集特征的沥青路面裂缝检测方法. 自动化学报, 2016, 42(3): 443-454. doi: 10.16383/j.aas.2016.c150511
引用本文: 张德津, 李清泉, 陈颖, 曹民, 何莉. 基于空间聚集特征的沥青路面裂缝检测方法. 自动化学报, 2016, 42(3): 443-454. doi: 10.16383/j.aas.2016.c150511
ZHANG De-Jin, LI Qing-Quan, CHEN Ying, CAO Min, HE Li. Asphalt Pavement Crack Detection Based on Spatial Clustering Feature. ACTA AUTOMATICA SINICA, 2016, 42(3): 443-454. doi: 10.16383/j.aas.2016.c150511
Citation: ZHANG De-Jin, LI Qing-Quan, CHEN Ying, CAO Min, HE Li. Asphalt Pavement Crack Detection Based on Spatial Clustering Feature. ACTA AUTOMATICA SINICA, 2016, 42(3): 443-454. doi: 10.16383/j.aas.2016.c150511

基于空间聚集特征的沥青路面裂缝检测方法

doi: 10.16383/j.aas.2016.c150511
基金项目: 

深圳市战略性新兴产业发展重大技术研究开发项目 JSGG20121026111056204

国家高技术研究发展计划(863计划) 2012AA112503

详细信息
    作者简介:

    张德津 深圳大学博士后.主要研究方向为智能交通系统, 公路无损检测和激光测量技术.E-mail:djzhang@whu.edu.cn

    李清泉 武汉大学和深圳大学教授.主要研究方向为摄影测量与遥感, 地理信息系统, 智能交通与道路检测.E-mail:liqq@szu.edu.cn

    陈颖 2013年获得西安交通大学电子与信息工程学院硕士学位.主要研究方向为图像及视频处理, 模式识别及智能监控.E-mail:chenying_xjtu@126.com

    曹民 测量遥感高级工程师.武汉大学获学士学位.主要研究方向为电力自动化和智能交通系统.E-mail:13307100949@189.cn

    通讯作者:

    何莉 湖北工业大学副教授.2007年获得华中科技大学博士学位.主要研究方向为人工智能, 数据建模及优化算法.本文通信作者.E-mail:heli.edu@hotmail.com

Asphalt Pavement Crack Detection Based on Spatial Clustering Feature

Funds: 

the Major Technology Research Grant for Shenzhen Strategic Emerging Industries JSGG20121026111056204

National High Technology Research and Development Program of China (863 Program) 2012AA112503

More Information
    Author Bio:

    Postdoctor at Shenzhen University. His research interest covers intelligent transportation system, pavement nondestructive testing, and laser measurement technology

     Professor at Wuhan University and Shenzhen University. His research interest covers photogrammetry and remote sensing, geographic information system, and intelligent transportation system and road surface checking

    Received her master degree from the School of Electronic and Information Engineering, Xi0an Jiaotong University in 2013. Her research interest covers image and video processing, pattern recognition, and intelligent surveillance

    Senior engineer in photogrammetry and remote sensing. He received his bachelor degree from Wuhan University. His research interest covers electric power automation and intelligent transportation system

    Corresponding author: HE Li Associate professor at Hubei University of Technology. She received her Ph. D. degree from Huazhong University of Science and Technology in 2007. Her research interest covers artificial intelligence, data modeling, and optimal algorithm. Corresponding author of this paper
  • 摘要: 沥青路面裂缝自动检测是制约公路养护科学决策的最主要瓶颈.针对现有裂缝检测算法在大规模应用特别是广地域、多路况等复杂环境下算法稳定性、可靠性及实时性等方面存在严重不足问题.本文在观察大量实际工程路面图像基础上, 对路面裂缝特征进行全新定义, 提出了一种基于空间聚集特征的沥青路面裂缝检测方法, 参考裂缝的空间分布、灰度、几何等特征, 以子块图像为处理单元, 采用逐步求精的策略对子块图像进行分割, 快速定位空间聚集区域, 再对聚集区域进行评估得到信度高的裂缝候选区域; 最后以裂缝候选区域为种子区域, 在准确估算裂缝发展趋势的基础上, 结合裂缝片段聚集及相似性等特性, 去除噪声同时合并连接断裂的裂缝, 实现了裂缝区域较为完整的检测.通过测试多路况、多采集环境下近万样本, 并采用不同的方法对测试结果进行评估, 结果显示, 算法对不同类型路面图像中具有不同特征的裂缝区域均具有良好的检测性能, 裂缝定位准确性达到95%以上, 裂缝区域检测的完整性达到90%以上.
  • 图  1  灰度校正结果说明

    Fig.  1  Illustration of the intensity correction result

    图  2  聚集区域提取过程

    Fig.  2  Explanation of the clustering region extraction process

    图  3  候选区域定位

    Fig.  3  Demonstration of the CCRs selection procedure

    图  4  置信区域方向获取方法

    Fig.  4  Illustration of different orientations for region growth

    图  5  裂缝生长及去噪效果

    Fig.  5  Examples of the proposed region growing process

    图  6  从左到右分别为原始图像、人工描点、本文算法、CrackTree、VCrack、WeightedCrack检测效果

    Fig.  6  The performance for some of the representative crack examples with distinctive characteristics (From top to bottom are pavement images, manually detected results, the proposed detection algorithm results, CrackTree detection algorithm results, VCrack detection algorithm results, and WeightedCrack detection algorithm results.)

    图  7  四种方法三个指标的比较

    Fig.  7  The comparison of the FNR, FPR, PPR of Proposed, CrackTree, VCrack, and WeightedCrack methods

    图  8  裂缝检测完整性评估结果

    Fig.  8  Performance evaluation of the completeness of the detected cracks

    表  1  不同1/p对检测结果的影响

    Table  1  The influence of different values of 1/p over detection results

    工程名图片大小图片数量1/p漏检率(%)误检率(%)
    0.105.127.83
    0.125.038.01
    工程12048×204833200.144.878.13
    0.164.848.19
    0.184.828.22
    0.204.828.31
    0.104.546.25
    0.124.496.28
    工程22048×204876480.144.426.29
    0.164.396.33
    0.184.386.35
    0.204.386.41
    下载: 导出CSV

    表  2  路面图像分类结果统计表

    Table  2  Statistics for accuracy of crack localization

    DBMethodPNTPTNFNFPFNR(%)FPR(%)PPR(%)
    Proposed1255118030502.33.896.8
    DB1CrackTree128512301230115855724.35.595.0
    VCrack1227116358674.55.295.0
    WeightedCrack1238117147593.64.595.8
    Proposed3446328322.38.596.1
    DB2CrackTree35266433762715374.310.094.9
    VCrack33162521396.010.594.1
    WeightedCrack34062612383.410.095.1
    Proposed54000000100
    DB3CrackTree540052701302.4097.6
    VCrack5310901.7098.3
    WeightedCrack5310901.7098.3
    Proposed2351903091.30.498.4
    DB4CrackTree23819923168365162.70.796.7
    VCrack22988483173.50.796.0
    WeightedCrack23198762122.60.597.0
    Proposed1373901070.70.598.8
    DB5CrackTree1383971352883192.20.797.3
    VCrack1330905373.80.596.0
    WeightedCrack1368921551.10.498.6
    Proposed4261560681.41.899.3
    DB6CrackTree43215683871482458610.418.293.5
    VCrack3841493487511.116.393.9
    WeightedCrack411153821304.96.897.5
    下载: 导出CSV
  • [1] Zhang J P, Wang F Y, Wang K F, Lin W H, Xu X, Chen C. Data-driven intelligent transportation systems:a survey. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4):1624-1639 doi: 10.1109/TITS.2011.2158001
    [2] Kamaliardakani M, Sun L, Ardakani M. Sealed-crack detection algorithm using heuristic thresholding approach. Journal of Computing in Civil Engineering, 2014, DOI: 10.1061/(ASCE)CP.1943-5487.0000447
    [3] He Y Q, Qiu H X. A method of cracks image segmentation based on the means of multiple thresholds. Journal of Communication and Computer, 2012, 9(10):1147-1151 http://www.cqvip.com/QK/88584X/201210/43862638.html
    [4] Chambon S, Moliard J. Automatic road pavement assessment with image processing:review and comparison. International Journal of Geophysics, 2011, 2011:Article ID 989354 https://www.hindawi.com/journals/ijge/2011/989354/
    [5] Lee B Y, Kim Y Y, Yi S T, Kim J K. Automated image processing technique for detecting and analysing concrete surface cracks. Structure and Infrastructure Engineering, 2013, 9(6):567-577 doi: 10.1080/15732479.2011.593891
    [6] Oliveira H, Correia P L. Automatic road crack detection and characterization. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(1):155-168 doi: 10.1109/TITS.2012.2208630
    [7] Mathavan S, Rahman M, Kamal K. Use of a self-organizing map for crack detection in highly textured pavement images. Journal of Infrastructure Systems, 2015, 21(3):04014052 doi: 10.1061/(ASCE)IS.1943-555X.0000237
    [8] Nejad F M, Zakeri H. An optimum feature extraction method based on wavelet-radon transform and dynamic neural network for pavement distress classification. Expert Systems with Applications, 2011, 38(8):9442-9460 doi: 10.1016/j.eswa.2011.01.089
    [9] Xu W, Tang Z M, Zhou J, Ding J D. Pavement crack detection based on saliency and statistical features. In:Proceedings of the 20th International Conference on Image Processing (ICIP). Melbourne, Australia:IEEE, 2013. 4093-4097
    [10] Huang Y X, Xu B G. Automatic inspection of pavement cracking distress. Journal of Electronic Imaging, 2006, 15(1):013017 doi: 10.1117/1.2177650
    [11] Sun L, Kamaliardakani M, Zhang Y. Weighted neighborhood pixels segmentation method for automated detection of cracks on pavement surface images. Journal of Computing in Civil Engineering, 2015, DOI: 10.1061/(ASCE)CP.1943-5487.0000488
    [12] Zalama E, Gómez-García-Bermejo J, Medina R, Llamas J. Road crack detection using visual features extracted by Gabor filters. Computer-Aided Civil and Infrastructure Engineering, 2014, 29(5):342-358 doi: 10.1111/mice.2014.29.issue-5
    [13] Ouyang A, Dong Q, Wang Y, Liu Y. The classification of pavement crack image based on Beamlet algorithm. Computer and Computing Technologies in Agriculture VII. Berlin Heidelberg:Springer, 2014. 129-137 doi: 10.1007%2F978-3-642-54341-8_13
    [14] Shu Z B, Guo Y Q. Algorithm on contourlet domain in detection of road cracks for pavement images. Journal of Algorithms and Computational Technology, 2013, 7(1):15-26 doi: 10.1260/1748-3018.7.1.15
    [15] Nejad F M, Zakeri H. A comparison of multi-resolution methods for detection and isolation of pavement distress. Expert Systems with Applications, 2011, 38(3):2857-2872 doi: 10.1016/j.eswa.2010.08.079
    [16] Oliveira H, Correia P L. Automatic road crack segmentation using entropy and image dynamic thresholding. In:Proceedings of the 17th European Signal Processing Conference. Glasgow, Scotland:IEEE, 2009. 622-626
    [17] Wang S C, Tang W S. Pavement crack segmentation algorithm based on local optimal threshold of cracks density distribution. Advanced Intelligent Computing. Berlin Heidelberg:Springer, 2012. 298-302 https://www.researchgate.net/publication/220777974_Pavement_Crack_Segmentation_Algorithm_Based_on_Local_Optimal_Threshold_of_Cracks_Density_Distribution
    [18] Zou Q, Cao Y, Li Q Q, Mao Q Z, Wang S. CrackTree:automatic crack detection from pavement images. Pattern Recognition Letters, 2012, 33(3):227-238 doi: 10.1016/j.patrec.2011.11.004
    [19] Sun Y, Salari E, Chou E. Automated pavement distress detection using advanced image processing techniques. In:Proceedings of the 2009 IEEE International Conference on Electro/Information Technology. Windsor, Ontario, Canada:IEEE, 2009. 373-377
    [20] Liu F F, Xu G A, Yang Y X, Niu X X, Pan Y L. Novel approach to pavement cracking automatic detection based on segment extending. In:Proceedings of the 2008 IEEE International Symposium on Knowledge Acquisition and Modeling. Wuhan, China:IEEE, 2008. 610-614
    [21] Oliveira H, Correia P L. Automatic crack detection on road imagery using anisotropic diffusion and region linkage. In:Proceedings of the 18th European Signal Processing Conference. Aalborg, Denmark:IEEE, 2010. 274-278
    [22] Sonka M, Hlavac V, Boyle R. Image Processing, Analysis, and Machine Vision (4th edition). Boston:CL Engineering, 2014. http://qpdf.aratasushinyc.com/image-processing-analysis-and-machine-phd-hlavac-vaclav-120470.pdf
    [23] 王德方, 曾卫明, 王倪传.基于改进K-means算法的不均匀光照下道路裂缝检测.计算机应用与软件, 2015, 32(7):244-247 http://edu.wanfangdata.com.cn/Periodical/Detail/jsjyyyrj201507059

    Wang De-Fang, Zeng Wei-Ming, Wang Ni-Zhuan. Road crack detection under uneven illumination using improved k-means algorithm. Computer Applications and Software, 2015, 32(7):244-247 http://edu.wanfangdata.com.cn/Periodical/Detail/jsjyyyrj201507059
    [24] Robert J M, Toussaint G T. Computational geometry and facility location. In:Proceedings of the 1990 International Conference on Operations Research and Management Science. Manila, Philippines:Springer, 1990. 11-15
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  2135
  • HTML全文浏览量:  198
  • PDF下载量:  1044
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-12
  • 录用日期:  2015-11-09
  • 刊出日期:  2016-03-01

目录

    /

    返回文章
    返回