2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有双重不确定性系统的联合滤波算法

江涛 钱富才 杨恒占 胡绍林

江涛, 钱富才, 杨恒占, 胡绍林. 具有双重不确定性系统的联合滤波算法. 自动化学报, 2016, 42(4): 535-544. doi: 10.16383/j.aas.2016.c150486
引用本文: 江涛, 钱富才, 杨恒占, 胡绍林. 具有双重不确定性系统的联合滤波算法. 自动化学报, 2016, 42(4): 535-544. doi: 10.16383/j.aas.2016.c150486
JIANG Tao, QIAN Fu-Cai, YANG Heng-Zhan, HU Shao-Lin. A New Combined Filtering Algorithm for Systems with Dual Uncertainties. ACTA AUTOMATICA SINICA, 2016, 42(4): 535-544. doi: 10.16383/j.aas.2016.c150486
Citation: JIANG Tao, QIAN Fu-Cai, YANG Heng-Zhan, HU Shao-Lin. A New Combined Filtering Algorithm for Systems with Dual Uncertainties. ACTA AUTOMATICA SINICA, 2016, 42(4): 535-544. doi: 10.16383/j.aas.2016.c150486

具有双重不确定性系统的联合滤波算法

doi: 10.16383/j.aas.2016.c150486
基金项目: 

国家自然科学基金 61273127, 61473222, 61533014

航天器在轨故障诊断与维修实验室开放课题 SDML OF2015004

陕西省科技创新团队 2013KCT-04

详细信息
    作者简介:

    江涛, 西安理工大学自动化与信息工程学院博士研究生. 主要研究方向为滤波算法, 卫星导航, 移动通信.E-mail:jiangtao.xaut@gmail.com

    杨恒占, 西安理工大学自动化与信息工程学院博士研究生, 西安工业大学讲师. 主要研究方向为最优控制, 随机控制, 系统辨识.E-mail:yanghengzhan@xatu.edu.cn

    胡绍林, 西安理工大学自动化与信息工程学院教授. 主要研究方向为过程监控, 系统安全, 导航与控制, 故障诊断与容错计算.E-mail:hfkth@126.com

    通讯作者:

    钱富才, 西安理工大学自动化与信息工程学院教授. 主要研究方向为随机控制, 系统辨识, 非线性控制, 最优控制, 故障诊断和全球定位系统.E-mail:qianfc@xaut.edu.cn

A New Combined Filtering Algorithm for Systems with Dual Uncertainties

Funds: 

National Natural Science Foundation of China 61273127, 61473222, 61533014

the Key Laboratory for Fault Diagnosis and Maintenance of Spacecraft in Orbit SDML OF2015004

Innovative Research Team of Shaanxi Province 2013KCT-04

More Information
    Author Bio:

    Ph. D. candidate at the School of Automation and Infor- mation Engineering, Xi0an University of Technology. His research interest covers -ltering algo- rithms, satellite navigation, and mobile communication.

    Ph. D. candi- date at the School of Automation and Information Engineering, Xi0an University of Technology, and lecturer at Xi0an Technological University. His research interest covers optimal control, stochastic control, and sys- tem identi-cation.

    Professor at the School of Automation and Information Engineering, Xi0an University of Tech- nology. His research interest covers process monitoring, system safety, navigation and control, fault diagnosis, and outlier-tolerant computing.

    Corresponding author: QIAN Fu-Cai Professor at the School of Automation and Information Engineering, Xi0an University of Technology. His research interest covers stochastic control, systems identi-cation, nonlinear control, and large-scale systems. Corresponding author of this paper.
  • 摘要: 卡尔曼滤波在高斯白噪声的假设下是一种最优滤波, 基于区间数学理论的集员滤波 (Set-membership filter, SMF)能够有效处理有界噪声假设下的滤波问题. 然而, 随机噪声和有界噪声在许多情况下会同时干扰控制系统. 由于两种滤波算法都受到各自适用范围的限制, 使用单一滤波算法难以得到理想的估计结果. 本文通过建立具有双重不确定性系统的模型, 提出了一种基于贝叶斯估计联合滤波算法. 该算法用卡尔曼滤波处理系统的随机不确定性, 用集员滤波处理系统的有界不确定性, 得出一个易于实现的滤波器. 最后通过对雷达跟踪系统的仿真, 结果表明, 较单一滤波算法, 联合滤波具有更强的噪声适应性和有效性.
  • 图  1  外定界椭球

    Fig.  1  Outer bounding ellipsoid

    图  2  椭球集合近似点

    Fig.  2  Ellipsoid set approximate points

    图  3  目标轨迹跟踪

    Fig.  3  Target trajectory tracking

    图  4  位移均方根误差

    Fig.  4  Root mean square error of displacement

    图  5  速度均方根误差

    Fig.  5  Root mean square error of velocity

    表  1  RMSE 均值对比

    Table  1  Comparison of RMSE means

    算法RMSE 均值
    位移(m) 速度(m/s)
    EKF 11.25411.9795
    ESMF 17.79993.3716
    New -lter 13.52492.1869
    下载: 导出CSV
  • [1] 丁原志, 宋晓梅. 雷达跟踪系统的随机干扰自适应. 自动化学报, 1989, 15(3): 209-216 http://www.aas.net.cn/CN/abstract/abstract14905.shtml

    Ding Yuan-Zhi, Song Xiao-Mei. Adaptation of tracking systems to random disturbances. Acta Automatica Sinica, 1989, 15(3): 209-216 http://www.aas.net.cn/CN/abstract/abstract14905.shtml
    [2] 石勇, 韩崇昭. 自适应UKF算法在目标跟踪中的应用. 自动化学报, 2011, 37(6): 755-759 http://www.aas.net.cn/CN/abstract/abstract17491.shtml

    Shi Yong, Han Chong-Zhao. Adaptive UKF method with applications to target tracking. Acta Automatica Sinica, 2011, 37(6): 755-759 http://www.aas.net.cn/CN/abstract/abstract17491.shtml
    [3] 祁武超, 邱志平. 基于区间分析的结构非概率可靠性优化设计. 中国科学: 物理学 力学 天文学, 2013, 43(1): 85-93 http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201301013.htm

    Qi Wu-Chao, Qiu Zhi-Ping. Non-probabilistic reliability-based structural design optimization based on interval analysis methods. Scientia Sinica-Physica, Mechanica & Astronomica, 2013, 43(1): 85-93 http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201301013.htm
    [4] Wei G L, Liu S A, Song Y, Liu Y R. Probability-guaranteed set-membership filtering for systems with incomplete measurements. Automatica, 2015, 60: 12-16 doi: 10.1016/j.automatica.2015.06.037
    [5] Witsenhausen H S. Sets of possible states of linear systems given perturbed observations. IEEE Transactions on Automatic Control, 1968, 13(5): 556-558 doi: 10.1109/TAC.1968.1098995
    [6] Cerone V, Lasserre J B, Piga D, Regruto D. A unified framework for solving a general class of conditional and robust set-membership estimation problems. IEEE Transactions on Automatic Control, 2014, 59(11): 2897-2909 doi: 10.1109/TAC.2014.2351695
    [7] 王超, 张胜修, 秦伟伟, 郑建飞. 具有自适应噪声边界的Tube可达集鲁棒预测控制. 控制理论与应用, 2014, 31(1): 11-18 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201401002.htm

    Wang Chao, Zhang Sheng-Xiu, Qin Wei-Wei, Zheng Jian-Fei. Tube-reachable set-based robust model predictive control with adaptive disturbances boundaries. Control Theory & Applications, 2014, 31(1): 11-18 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201401002.htm
    [8] 吴昊, 陈树新, 杨宾峰, 陈坤. 基于广义M估计的鲁棒容积卡尔曼滤波目标跟踪算法. 物理学报, 2015, 64(21): 218401-1-218401-8 http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201521049.htm

    Wu Hao, Chen Shu-Xin, Yang Bin-Feng, Chen Kun. Robust cubature Kalman filter target tracking algorithm based on genernalized M-estiamtion. Acta Physica Sinica, 2015, 64(21): 218401-1-218401-8 http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201521049.htm
    [9] Cerone V, Razza V, Regruto D. Set-membership estimation of fiber laser physical parameters from input-output power measurements. Automatica, 2015, 61: 211-217 doi: 10.1016/j.automatica.2015.08.019
    [10] Zhai S C, Wang W, Ye H. Auxiliary signal design for active fault detection based on set-membership. IFAC-PapersOnLine, 2015, 48(21): 452-457 doi: 10.1016/j.ifacol.2015.09.568
    [11] Guo L. Estimating time-varying parameters by the Kalman filter based algorithm: stability and convergence. IEEE Transactions on Automatic Control, 1990, 35(2): 141-147 doi: 10.1109/9.45169
    [12] Oberkampf W L, Helton J C, Joslyn C A, Wojtkiewicz S F, Ferson S. Challenge problems: uncertainty in system response given uncertain parameters. Reliability Engineering & System Safety, 2004, 85(1-3): 11-19 http://cn.bing.com/academic/profile?id=2037662824&encoded=0&v=paper_preview&mkt=zh-cn
    [13] Hanbeck U D, Horn J, Schmidt G. On combining statistical and set-theoretic estimation. Automatica, 1999, 35(6): 1101-1109 doi: 10.1016/S0005-1098(99)00011-4
    [14] Noack B, Klumpp V, Hanebeck U D. State estimation with sets of densities considering stochastic and systematic errors. In: Proceedings of the 12th International Conference on Information Fusion. Seattle USA: IEEE, 2009. 1751-1758
    [15] Klumpp V, Noack B, Baum M, Hanebeck U D. Combined set-theoretic and stochastic estimation: a comparison of the SSI and the CS filter. In: Proceedings of the 13th Conference on Information Fusion. Edinburgh, United Kingdom: IEEE, 2010. 1-8
    [16] Henningsson T. Recursive state estimation for linear systems with mixed stochastic and set-bounded disturbances. In: Proceedings of the 47th IEEE Conference on Decision and Control. Cancun, Mexico: IEEE, 2008. 678-683
    [17] Liu Y S, Zhao Y. Ellipsoidal set filter combined set-membership and statistics uncertainties for bearing-only maneuvering target tracking. In: Proceedings of the 2014 IEEE/ION Position, Location and Navigation Symposium (PLANS 2014). Monterey, CA: IEEE, 2014. 753-759
    [18] Fogel E, Huang Y F. On the value of information in system identification-bounded noise case. Automatica, 1982, 18(2): 229-238 doi: 10.1016/0005-1098(82)90110-8
    [19] Morrell D R, Stirling W C. An extended set-valued Kalman filter. In: Proceedings of the 2003 International Symposium on Imprecise Probabilities and Their Applications (ISIPTA). Lugano, Switzerland, 2003. 395-407
    [20] Milanese M, Novara C. Unified set membership theory for identification, prediction and filtering of nonlinear systems. Automatica, 2011, 47(10): 2141-2151 doi: 10.1016/j.automatica.2011.03.013
    [21] 宋大雷, 吴冲, 齐俊桐, 韩建达. 基于MIT规则的自适应扩展集员估计方法. 自动化学报, 2012, 38(11): 1847-1860 doi: 10.3724/SP.J.1004.2012.01847

    Song Da-Lei, Wu Chong, Qi Jun-Tong, Han Jian-Da. A MIT-based nonlinear adaptive set-membership filter for ellipsoidal estimation. Acta Automatica Sinica, 2012, 38(11): 1847-1860 doi: 10.3724/SP.J.1004.2012.01847
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  2225
  • HTML全文浏览量:  238
  • PDF下载量:  1040
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-30
  • 录用日期:  2015-12-22
  • 刊出日期:  2016-04-01

目录

    /

    返回文章
    返回