Application of a New Adaptive Robust Controller Design Method to Electro-hydraulic Servo System
-
摘要: 提出了一种自适应鲁棒控制器设计新方法, 并运用在阀控缸电液位置伺服系统中.首先, 将含有确定、不确定、已知、未知、线性和非线性项的电液伺服系统进行完整地数学建模, 以状态空间的形式表出.然后利用本文所提的新方法设计自适应鲁棒控制器和相应的自适应律来处理所建模型中的各项元素.该控制器通过设计一个带有虚拟控制量的控制状态空间表达式并结合状态观测器来获得.设计合适的虚拟控制量, 可在任意给定条件下, 使所有的系统状态都收敛到所设计的理想状态.接着设计李亚普诺夫函数来证明闭环系统的稳定性.最后建立硬件实验平台与经典自适应鲁棒控制方法进行对比实验验证此自适应鲁棒控制器设计新方法的有效性和优势.Abstract: This paper proposes a new design method of adaptive robust controller and applies it to a valve-control-cylinder electro-hydraulic servo system. Firstly, the system is fully derived in the state-space form, which includes all the certain, uncertain, known, unknown, linear and nonlinear terms of the system. Then the adaptive robust controller designed by the new method is employed, together with the chosen adaption laws, to deal with all the elements of the modeled mathematical system. The proposed controller is obtained by designing a control state-space expression with auxiliary control components and a state observer. Under an arbitrary given trajectory, all the system states will converge to the desired states through designing the appropriate auxiliary control components. Lyapunov method is utilized to strictly prove the convergence and stability of the system. Finally, a hardware platform of the system is set up and comparative experiments with the adaptive robust controller are implemented to verify the effectiveness and advantages of the proposed method.
-
Key words:
- Adaptive robust /
- state observer /
- electro-hydraulic /
- uncertainties /
- nonlinear
-
表 1 电液伺服系统硬件配置
Table 1 The hardware of electro-hydraulic servo system
组件 型号与参数 伺服电机 MDME152GCGM 泵 MCY14-13 溢流阀 Rexroth 伺服阀 FF-101/8 位移传感器 LVDT(WY-100L) 压力传感器 TRAFAG8251.84.25.17/NAT4000A 控制器 TMS320F28335 液压缸 $L$ : 100 mm, $D$ (piston): 20 mm, $D$ (rod): 10 mm 表 2 系统参数
Table 2 The system parameters
参数 值/单位 参数 值/单位 $ {P_s}$ $ 9 {\rm MPa}$ $ {C_d}$ $ 0.62$ $ {P_r}$ $ 0 {\rm MPa}$ $ W$ $ \pi /4 \times {10^{ -3}} {\rm {m^2}/m}$ $ {A_1}$ $ 3.14 \times {10^{ -4}} {\rm {m^2}}$ $ {C_{tm}}$ $ 1 \times {10^{ -5}} {\rm {m^3}/s/MPa}$ $ {A_2}$ $ 2.355 \times {10^{ -4}} {\rm {m^2}}$ $ {C_{em1}}$ $ 1 \times {10^{ -8}} {\rm {m^3}/s/MPa}$ $ {V_{10}}$ $ 8.5 \times {10^{ -5}} {\rm {m^3}}$ $ {C_{em2}}$ $ 1 \times {10^{ -8}} {\rm {m^3}/s/MPa}$ $ {V_{20}}$ $ 5.36 \times {10^{ -5}} {\rm {m^3}}$ $ \rho $ $ 870 {\rm kg/{m^3}}$ $ {\beta _e}$ $ 690 {\rm MPa}$ $ {k_v}$ $ 0.25 {\rm m/A}$ $ M$ $ 20 {\rm kg}$ $ {\tau _v}$ $ 0.008 {\rm s}$ -
[1] Merritt H E. Hydraulic Control Systems. New York:John Wiley and Sons, 1967. [2] Yao J Y, Jiao Z X, Yao B. Nonlinear adaptive robust backstepping force control of hydraulic load simulator:theory and experiments. Journal of Mechanical Science and Technology, 2014, 28(4):1499-1507 doi: 10.1007/s12206-014-0137-z [3] Yao J Y, Jiao Z X, Ma D W. Adaptive robust control of DC motors with extended state observer. IEEE Transactions on Industrial Electronics, 2014, 61(7):3630-3637 doi: 10.1109/TIE.2013.2281165 [4] Lu L, Yao B. Energy-saving adaptive robust control of a hydraulic manipulator using five cartridge valves with an accumulator. IEEE Transactions on Industrial Electronics, 2014, 61(12):7046-7054 doi: 10.1109/TIE.2014.2314054 [5] Busquets E, Ivantysynova M. Adaptive robust motion control of an excavator hydraulic hybrid swing drive. SAE International Journal of Commercial Vehicles, 2015, 8(2):568-582 doi: 10.4271/2015-01-2853 [6] Chen G R, Wang J Z, Ma L L, Hao R J. Observer-based and energy saving control of single-rod electro-hydraulic servo system driven by servo motor. In:Proceedings of the 2015 American Control Conference. Chicago, USA:IEEE, 2015. 2224-2229 [7] 陈光荣, 王军政, 汪首坤, 马立玲.基于主被动负载的负载独立口双阀节能控制系统研究.北京理工大学学报[Online], available: http://journal.bit.edu.cn/zr/ch/reader/view_abstract.aspx?flag=2&file_no=201501040000002&journal_id=bjlgzr, Nov-ember 2, 2015Chen Guang-Rong, Wang Jun-Zheng, Wang Shou-Kun, Ma Li-Ling. The research of separate meter in and separate meter out energy saving control system using dual servo valves under complex load conditions. Transactions of Beijing Institute of Technology[Online], available: http://journal.bit.edu.cn/zr/ch/reader/view_abstract.aspx?flag=2&file_no=201501040000002&journal_id=bjlgzr, Nov-ember 2, 2015 [8] He Y D, Wang J Z, Hao R J. Adaptive robust dead-zone compensation control of electro-hydraulic servo systems with load disturbance rejection. Journal of Systems Science and Complexity, 2015, 28(2):341-359 doi: 10.1007/s11424-014-2243-5 [9] Truong D Q, Ahn K K. Force control for hydraulic load simulator using self-tuning grey predictor-fuzzy PID. Mechatronics, 2009, 19(2):233-246 doi: 10.1016/j.mechatronics.2008.07.007 [10] Guo Q, Yu T, Jiang D. High-gain observer-based output feedback control of single-rod electro-hydraulic actuator. IET Control Theory and Applications, 2015, 9(16):2395-2404 doi: 10.1049/iet-cta.2014.1158 [11] Yao B, Bu F P, Reedy J, Chiu G T C. Adaptive robust motion control of single-rod hydraulic actuators:theory and experiments. IEEE/ASME Transactions on Mechatronics, 2000, 5(1):79-91 doi: 10.1109/3516.828592 [12] Guan C, Pan S X. Nonlinear adaptive robust control of single-rod electro-hydraulic actuator with unknown nonlinear parameters. IEEE Transactions on Control Systems Technology, 2008, 16(3):434-445 doi: 10.1109/TCST.2007.908195 [13] Li Y M, Tong S C, Li T S. Observer-based adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control directions and unknown dead zones. IEEE Transactions on Fuzzy Systems, 2015, 23(4):1228-1241 doi: 10.1109/TFUZZ.2014.2348017 [14] Lu L, Yao B, Wang Q F, Chen Z. Adaptive robust control of linear motors with dynamic friction compensation using modified LuGre model. Automatica, 2009, 45(12):2890-2896 doi: 10.1016/j.automatica.2009.09.007 [15] Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and Adaptive Control Design. New York:Wiley, 1995. [16] Yao B, Tomizuka M. Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form. Automatica, 1997, 33(5):893-900 doi: 10.1016/S0005-1098(96)00222-1 [17] Yao B, Palmer A. Indirect adaptive robust control of SISO nonlinear systems in semi-strict feedback forms. In:Proceedings of the 15th IFAC World Congress. Barcelona, Spain:IFAC, 2002. 1050 [18] Tong S C, Sui S, Li Y M. Fuzzy adaptive output feedback control of MIMO nonlinear systems with partial tracking errors constrained. IEEE Transactions on Fuzzy Systems, 2015, 23(4):729-742 doi: 10.1109/TFUZZ.2014.2327987 [19] Yao J Y, Jiao Z X, Ma D W. Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping. IEEE Transactions on Industrial Electronics, 2014, 61(11):6285-6293 doi: 10.1109/TIE.2014.2304912 [20] 王亚刚, 许晓鸣.自适应鲁棒最优PI控制器.自动化学报, 2009, 35(10):1352-1356 doi: 10.3724/SP.J.1004.2009.01352Wang Ya-Gang, Xu Xiao-Ming. Adaptive and optimal PI controller with robustness. Acta Automatica Sinica, 2009, 35(10):1352-1356 doi: 10.3724/SP.J.1004.2009.01352