2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于轮廓模板和自学习的图像纹理增强超采样算法

肖进胜 庞观林 唐路敏 钱超 邹白昱

肖进胜, 庞观林, 唐路敏, 钱超, 邹白昱. 基于轮廓模板和自学习的图像纹理增强超采样算法. 自动化学报, 2016, 42(8): 1248-1258. doi: 10.16383/j.aas.2016.c150458
引用本文: 肖进胜, 庞观林, 唐路敏, 钱超, 邹白昱. 基于轮廓模板和自学习的图像纹理增强超采样算法. 自动化学报, 2016, 42(8): 1248-1258. doi: 10.16383/j.aas.2016.c150458
XIAO Jin-Sheng, PANG Guan-Lin, TANG Lu-Min, QIAN Chao, ZOU Bai-Yu. Image Texture Enhancement via Upscaling Algorithm Based on Contour Stencils and Self-learning. ACTA AUTOMATICA SINICA, 2016, 42(8): 1248-1258. doi: 10.16383/j.aas.2016.c150458
Citation: XIAO Jin-Sheng, PANG Guan-Lin, TANG Lu-Min, QIAN Chao, ZOU Bai-Yu. Image Texture Enhancement via Upscaling Algorithm Based on Contour Stencils and Self-learning. ACTA AUTOMATICA SINICA, 2016, 42(8): 1248-1258. doi: 10.16383/j.aas.2016.c150458

基于轮廓模板和自学习的图像纹理增强超采样算法

doi: 10.16383/j.aas.2016.c150458
基金项目: 

国家自然科学基金 61471272

详细信息
    作者简介:

    庞观林 武汉大学电子信息学院硕士研究生.主要研究方向为数字图像处理.E-mail:pglwhdx@whu.edu.cn;

    唐路敏 武汉大学电子信息学院硕士研究生.主要研究方向为数字图像处理.E-mail:Lumintang@163.com;

    钱超 武汉大学电子信息学院硕士研究生.主要研究方向为视频图像处理.E-mail:qianchao@whu.edu.cn;

    邹白昱 武汉大学电子信息学院硕士研究生.主要研究方向为数字图像处理.E-mail:zby@whu.edu.cn

    通讯作者:

    肖进胜 武汉大学电子信息学院副教授,博士.主要研究方向为视频图像处理,计算机视觉,多媒体网络通信.本文通信作者.E-mail:jsxiao@tom.com

Image Texture Enhancement via Upscaling Algorithm Based on Contour Stencils and Self-learning

Funds: 

National Natural Science Foundation of China 61471272

More Information
    Author Bio:

    Master student at the School of Electronic Information, Wuhan University. His main research interest is digital image processing.E-mail:

    Master student at the School of Electronic Information, Wuhan University. His main research interest is digital image processing.E-mail:

    Master student at the School of Electronic Information, Wuhan University. His main research interest is video and image processing.E-mail:

    Master student at the School of Electronic Information, Wuhan University. His main research interest is digital image processing.E-mail:

    Corresponding author: XIAO Jin-Sheng Ph. D., associate professor at the School of Electronic Information, Wuhan University. His research interest covers video and image processing, computer vision, multimedia network communication. Corresponding author of this paper.
  • 摘要: 提出一种以轮廓模板插值和局部自学习相结合的图像纹理增强超采样算法,有效地恢复了插值图像丢失的细节纹理,抑制了插值图像边缘的扩散.该方法通过局部自相似性在原始低分辨图像中估计高频信息,对轮廓模板插值图像的细节纹理进行了恢复.其中,为了弥补轮廓模板插值缺少先验知识的缺陷,将原始低分辨率图像的高频信息作为先验知识.为了保证估计的高频信息最优,匹配的过程中采用双匹配,相比较于全局搜索和小窗搜索,提高了效率并保证了匹配精度.此外,使用高斯模糊代替了传统提取高频信息的方法,简化了算法的复杂度,提高了准确性和效率.对估计得到的高频信息采用高斯函数加窗,以减小估计出错和重叠区的混叠影响.本文算法的训练库由原始低分辨图像自身和插值图像构成,节省了生成训练库所需的时间和空间.训练库的简化使得高频信息的估计可以多尺度进行,算法效率得到进一步优化.理论分析和实验结果表明,相比传统的基于插值、基于自学习的图像超分辨率方法,本文方法获得更好的实验结果,主观效果得到明显改善,有效地恢复了图像的纹理细节,提高了图像边缘锐度,避免了产生锯齿等人工效应,客观指标得到提高.
  • 图  1  本文算法流程框架

    Fig.  1  The flowchart for proposed algorithm

    图  2  分块局部示意图

    Fig.  2  Schematic of local block

    图  3  定位示意图

    Fig.  3  Location map

    图  4  搜索和匹配块示意图

    Fig.  4  Search and matching block diagram

    图  5  高频对比图

    Fig.  5  The comparison of the high-frequency

    图  6  测试图像

    Fig.  6  The test images

    图  7  Child主观效果对比

    Fig.  7  Subjective effect comparison of the image Child

    图  8  Koala主观效果对比

    Fig.  8  Subjective effect comparison of the image Koala

    图  9  Girl主观效果对比

    Fig.  9  Subjective effect comparison of the image Girl

    图  10  Wheel主观效果对比

    Fig.  10  Subjective effect comparison of the image Wheel

    图  11  不同高斯半径下提取的高频图

    Fig.  11  The extraction of high frequency diagram underdifferent radius of the Gaussian

    图  12  不同高斯方差下提取的高频图

    Fig.  12  Extraction of high frequency diagram underdifferent Gaussian

    图  13  不同方差和不同匹配块下图像的质量

    Fig.  13  Image quality under the different variance and the matching

    表  1  测试图像分辨率

    Table  1  The resolutions of the test images

    ChildKoalaGirlWheel
    分辨率128×128161×241151×225207×157
    下载: 导出CSV

    表  2  客观指标对比

    Table  2  The comparison of objective indicators

    图像 客观指标 Bicubic Getreuer Glasner Freedman本文算法
    PSNR37.68738.29838.64724.216 39.339 39.339
    SSIM0.986 0.988 0.989 0.8300.991
    EPI 0.497 0.517 0.562 0.5600.588
    Entropy5.2725.2705.2765.2645.259
    Clarity5.2605.4505.9015.0646.173
    KoalaPSNR38.71639.10139.48329.43139.738
    SSIM0.9860.9880.9890.8400.990
    EPI0.3490.3760.4340.4360.464
    Entropy4.8194.8314.8394.8854.895
    Clarity3.4343.6834.2625.4924.553
    GirlPSNR 40.00840.61740.89226.80141.642
    SSIM0.9910.9920.9930.8600.994
    EPI0.4440.4670.5180.5330.541
    Entropy5.2755.2745.2815.2725.269
    Clarity3.4803.6434.0233.9504.219
    WheelPSNR36.25936.92937.30825.07338.126
    SSIM0.9800.9830.9840.8210.986
    EPI0.5170.5510.6030.6490.663
    Entropy5.3535.3605.3535.3875.401
    Clarity5.1405.4546.0296.1776.621
    下载: 导出CSV

    表  3  所有测试图片的平均指标

    Table  3  The average index of all test images

    平均指标PSNRSSIMEPIEntropyClarity
    Bicubic33.4010.9310.3775.0943.489
    Getreuer33.8740.9380.4015.0993.698
    Glasner34.1790.9450.4565.0984.216
    Freedman26.1440.8510.4275.1053.959
    下载: 导出CSV

    表  4  效率对比(s)

    Table  4  The contrast of efficiency (s)

    图像GlasnerFreedman本文算法
    Child186137793
    Koala4314875287
    Girl3923748200
    Wheel4819636185
    下载: 导出CSV
  • [1] Nasrollahi K, Moeslund T B. Super-resolution:a comprehensive survey. Machine Vision and Applications, 2014, 25(6):1423-1468 doi: 10.1007/s00138-014-0623-4
    [2] Balure C S, Kini M R. A survey-super resolution techniques for multiple, single, and stereo images. In:Proceedings the 5th International Symposium on Electronic System Design (ISED). Surathkal:IEEE, 2014.215-216 https://www.computer.org/csdl/proceedings/ised/2014/6965/00/index.html
    [3] 潘宗序, 禹晶, 肖创柏, 孙卫东. 基于多尺度非局部约束的单幅图像超分辨率算法. 自动化学报, 2014, 40(10):2233-2244 http://www.aas.net.cn/CN/abstract/abstract18498.shtml

    Pan Zong-Xu, Yu Jing, Xiao Chuang-Bai, Sun Wei-Dong. Single-image super-resolution algorithm based on multi-scale nonlocal regularization. Acta Automatica Sinica, 2014, 40(10):2233-2244 http://www.aas.net.cn/CN/abstract/abstract18498.shtml
    [4] Getreuer P. Contour stencils:total variation along curves for adaptive image interpolation. SIAM Journal on Imaging Sciences, 2011, 4(3):954-979 doi: 10.1137/100802785
    [5] 肖进胜, 饶天宇, 贾茜, 唐路敏, 岳显昌. 改进的自适应冲击滤波图像超分辨率插值算法. 计算机学报, 2015, 38(6):1131-1139 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201506003.htm

    Xiao Jin-Sheng, Rao Tian-Yu, Jia Qian, Tang Lu-Min, Yue Xian-Chang. Interpolation algorithm based on improved adaptive shock filter in image super-resolution. Chinese Journal of Computers, 2015, 38(6):1131-1139 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201506003.htm
    [6] Freedman G, Fattal R. Image and video upscaling from local self-examples. ACM Transactions on Graphics, 2011, 30(2):Article No.12 http://cn.bing.com/academic/profile?id=1976416062&encoded=0&v=paper_preview&mkt=zh-cn
    [7] Kawano H, Suetake N, Cha B, Aso T. Sharpness preserving image enlargement by using self-decomposed codebook and Mahalanobis distance. Image and Vision Computing, 2009, 27(6):684-693 doi: 10.1016/j.imavis.2008.07.013
    [8] Zhang Y Q, Liu J Y, Yang W H, Guo Z M. Image super-resolution based on structure-modulated sparse representation. IEEE Transactions on Image Processing, 2015, 24(9):2797-2810 doi: 10.1109/TIP.2015.2431435
    [9] Zhang Y Q, Xiao J S, Li S H, Shi C Y, Xie G X. Learning block-structured incoherent dictionaries for sparse representation. Science China Information Sciences, 2015, 58(10):1-15 http://cn.bing.com/academic/profile?id=888734479&encoded=0&v=paper_preview&mkt=zh-cn
    [10] Yang C Y, Huang J B, Yang M H. Exploiting self-similarities for single frame super-resolution. In:Proceedings of the 10th Asian Conference on Computer Vision (ACCV). Queenstown, New Zealand:Springer, 2011.497-510
    [11] Glasner D, Bagon S, Irani M. Super-resolution from a single image. In:Proceedings of the 12th IEEE International Conference on Computer Vision (ICCV). Kyoto, Japan:IEEE, 2009.349-356 http://cn.bing.com/academic/profile?id=2017294772&encoded=0&v=paper_preview&mkt=zh-cn
    [12] Schulter S, Leistner C, Bischof H. Fast and accurate image upscaling with super-resolution forests. In:Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA:IEEE, 2015.3791-3799
    [13] Sajjad M, Ejaz N, Baik S W. Multi-kernel based adaptive interpolation for image super-resolution. Multimedia Tools and Applications, 2014, 72(3):2063-2085 doi: 10.1007/s11042-012-1325-4
    [14] Barnsley M F. Fractal modeling of real world images. The Science of Fractal Images. New York:Springer, 1988.219-242
    [15] Ebrahimi M, Vrscay E R. Solving the inverse problem of image zooming using ‘self-examples’. Image analysis and Recognition. Berlin Heidelberg:Springer, 2007.117-130
    [16] Liu C, Shum H Y, Zhang C S. A two-step approach to hallucinating faces:global parametric model and local nonparametric model. In:Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Kauai, HI, USA:IEEE, 2001. I-192-I-198
    [17] Yang M-C, Wang Y-C F. A self-learning approach to single image super-resolution. IEEE Transactions on Multimedia, 2013, 15(3):498-508 doi: 10.1109/TMM.2012.2232646
    [18] Wu W, Liu Z, He X H. Learning-based super resolution using kernel partial least squares. Image and Vision Computing, 2011, 29(6):394-406 doi: 10.1016/j.imavis.2011.02.001
    [19] Berkeley segmentation database (BSD)[online], available:http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/,March14,2014
    [20] Wang Z, Bovik A C, Sheikh H R, Simoncelli E P. Image quality assessment:from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4):600-612 doi: 10.1109/TIP.2003.819861
    [21] 肖进胜, 杜康华, 涂超平, 岳显昌. 基于多聚焦图像深度信息提取的背景虚化显示. 自动化学报, 2015, 41(2):304-311 http://www.aas.net.cn/CN/abstract/abstract18609.shtml

    Xiao Jin-Sheng, Du Kang-Hua, Tu Chao-Ping, Yue Xian-Chang. Bokeh display based on depth information extraction of multi-focus images. Acta Automatica Sinica, 2015, 41(2):304-311 http://www.aas.net.cn/CN/abstract/abstract18609.shtml
    [22] Xiao J S, Li W H, Liu G X, Shaw S L, Zhang Y Q. Hierarchical tone mapping based on image colour appearance model. IET Computer Vision, 2014, 8(4):358-364 doi: 10.1049/iet-cvi.2013.0230
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  2118
  • HTML全文浏览量:  279
  • PDF下载量:  662
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-14
  • 录用日期:  2016-02-18
  • 刊出日期:  2016-08-01

目录

    /

    返回文章
    返回